Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Exploring GPT-3

You're reading from   Exploring GPT-3 An unofficial first look at the general-purpose language processing API from OpenAI

Arrow left icon
Product type Paperback
Published in Aug 2021
Publisher Packt
ISBN-13 9781800563193
Length 296 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Steve Tingiris Steve Tingiris
Author Profile Icon Steve Tingiris
Steve Tingiris
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Section 1: Understanding GPT-3 and the OpenAI API
2. Chapter 1: Introducing GPT-3 and the OpenAI API FREE CHAPTER 3. Chapter 2: GPT-3 Applications and Use Cases 4. Section 2: Getting Started with GPT-3
5. Chapter 3: Working with the OpenAI Playground 6. Chapter 4: Working with the OpenAI API 7. Chapter 5: Calling the OpenAI API in Code 8. Section 3: Using the OpenAI API
9. Chapter 6: Content Filtering 10. Chapter 7: Generating and Transforming Text 11. Chapter 8: Classifying and Categorizing Text 12. Chapter 9: Building a GPT-3-Powered Question-Answering App 13. Chapter 10: Going Live with OpenAI-Powered Apps 14. Other Books You May Enjoy

Introducing Davinci, Babbage, Curie, and Ada

The massive dataset that is used for training GPT-3 is the primary reason why it's so powerful. However, bigger is only better when it's necessary—and more power comes at a cost. For those reasons, OpenAI provides multiple models to choose from. Today there are four primary models available, along with a model for content filtering and instruct models.

The available models or engines (as they're also referred to) are named Davinci, Babbage, Curie, and Ada. Of the four, Davinci is the largest and most capable. Davinci can perform any tasks that any other engine can perform. Babbage is the next most capable engine, which can do anything that Curie or Ada can do. Ada is the least capable engine, but the best-performing and lowest-cost engine.

When you're getting started and for initially testing new prompts, you'll usually want to begin with Davinci , then try, Ada, Babbage, or Curie to see if one of them can complete the task faster or more cost-effectively. The following is an overview of each engine and the types of tasks that might be best suited for each. However, keep in mind that you'll want to test. Even though the smaller engines might not be trained with as much data, they are all still general-purpose models.

Davinci

Davinci is the most capable model and can do anything that any other model can do, and much more—often with fewer instructions. Davinci is able to solve logic problems, determine cause and effect, understand the intent of text, produce creative content, explain character motives, and handle complex summarization tasks.

Curie

Curie tries to balance power and speed. It can do anything that Ada or Babbage can do but it's also capable of handling more complex classification tasks and more nuanced tasks like summarization, sentiment analysis, chatbot applications, and Question and Answers.

Babbage

Babbage is a bit more capable than Ada but not quite as performant. It can perform all the same tasks as Ada, but it can also handle a bit more involved classification tasks, and it's well suited for semantic search tasks that rank how well documents match a search query.

Ada

Ada is usually the fastest model and least costly. It's best for less nuanced tasks—for example, parsing text, reformatting text, and simpler classification tasks. The more context you provide Ada, the better it will likely perform.

Content filtering model

To help prevent inappropriate completions, OpenAI provides a content filtering model that is fine-tuned to recognize potentially offensive or hurtful language.

Instruct models

These are models that are built on top of the Davinci and Curie models. Instruct models are tuned to make it easier to tell the API what you want it to do. Clear instructions can often produce better results than the associated core model.

A snapshot in time

A final note to keep in mind about all of the engines is that they are all a snapshot in time, meaning the data used to train them cuts off on the date the model was built. So, GPT-3 is not working with up-to-the-minute or even up-to-the-day data—it's likely weeks or months old. OpenAI is planning to add more continuous training in the future, but today this is a consideration to keep in mind.

All of the GPT-3 models are extremely powerful and capable of generating text that is indistinguishable from human-written text. This holds tremendous potential for all kinds of potential applications. In most cases, that's a good thing. However, not all potential use cases are good.

You have been reading a chapter from
Exploring GPT-3
Published in: Aug 2021
Publisher: Packt
ISBN-13: 9781800563193
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime