Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Efficient Algorithm Design

You're reading from   Efficient Algorithm Design Unlock the power of algorithms to optimize computer programming

Arrow left icon
Product type Paperback
Published in Oct 2024
Publisher Packt
ISBN-13 9781835886823
Length 360 pages
Edition 1st Edition
Arrow right icon
Author (1):
Arrow left icon
Masoud Makrehchi Masoud Makrehchi
Author Profile Icon Masoud Makrehchi
Masoud Makrehchi
Arrow right icon
View More author details
Toc

Table of Contents (21) Chapters Close

Preface 1. Part 1: Foundations of Algorithm Analysis FREE CHAPTER
2. Chapter 1: Introduction to Algorithm Analysis 3. Chapter 2: Mathematical Induction and Loop Invariant for Algorithm Correctness 4. Chapter 3: Rate of Growth for Complexity Analysis 5. Chapter 4: Recursion and Recurrence Functions 6. Chapter 5: Solving Recurrence Functions 7. Part 2: Deep Dive in Algorithms
8. Chapter 6: Sorting Algorithms 9. Chapter 7: Search Algorithms 10. Chapter 8: Symbiotic Relationship between Sort and Search 11. Chapter 9: Randomized Algorithms 12. Chapter 10: Dynamic Programming 13. Part 3: Fundamental Data Structures
14. Chapter 11: Landscape of Data Structures 15. Chapter 12: Linear Data Structures 16. Chapter 13: Non-Linear Data Structures 17. Part 4: Next Steps
18. Chapter 14: Tomorrow’s Algorithms 19. Index 20. Other Books You May Enjoy

The master theorem

In the analysis of algorithms, the master theorem plays a crucial role in solving recurrences for divide-and-conquer algorithms. Introduced in 1980, it has become a mainstream approach for estimating the complexity of a wide range of recurrence functions. The master theorem provides a straightforward framework for determining the asymptotic behavior of recurrences of the following form:

<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math" display="block"><mml:mi>T</mml:mi><mml:mfenced separators="|"><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:mfenced><mml:mo>=</mml:mo><mml:mi>a</mml:mi><mml:mi>T</mml:mi><mml:mfenced separators="|"><mml:mrow><mml:mfrac><mml:mrow><mml:mi>n</mml:mi></mml:mrow><mml:mrow><mml:mi>b</mml:mi></mml:mrow></mml:mfrac></mml:mrow></mml:mfenced><mml:mo>+</mml:mo><mml:mi>f</mml:mi><mml:mfenced separators="|"><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:mfenced></mml:math>

Here, <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mi>a</mml:mi><mml:mo>≥</mml:mo><mml:mn>1</mml:mn></mml:math> and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mi>b</mml:mi><mml:mo>></mml:mo><mml:mn>1</mml:mn></mml:math> are constants, and f(n), the driving function, is an asymptotically positive function bounded by polynomial functions. This means there exist two polynomial functions <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mi>g</mml:mi><mml:mo>(</mml:mo><mml:mi>n</mml:mi><mml:mo>)</mml:mo></mml:math> and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mi>h</mml:mi><mml:mo>(</mml:mo><mml:mi>n</mml:mi><mml:mo>)</mml:mo></mml:math> such that the following is the case:

<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math" display="block"><mml:mi>g</mml:mi><mml:mfenced separators="|"><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:mfenced><mml:mo>≤</mml:mo><mml:mi>f</mml:mi><mml:mfenced separators="|"><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:mfenced><mml:mo>≤</mml:mo><mml:mi>h</mml:mi><mml:mfenced separators="|"><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:mfenced></mml:math>

The importance of the master theorem lies in its ability to simplify the complexity analysis of many common algorithms, such as merge sort, quicksort, and binary search, among others. By categorizing the behavior of the recurrence based on the relationship between <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:mi>f</mml:mi><mml:mo>(</mml:mo><mml:mi>n</mml:mi><mml:mo>)</mml:mo></mml:math> and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:m="http://schemas.openxmlformats.org/officeDocument/2006/math"><mml:msup><mml:mrow><mml:mi>n</mml:mi></mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">log</mml:mi></mml:mrow><mml:mrow><mml:mi>b</mml:mi></mml:mrow></mml:msub></mml:mrow><mml:mo>⁡</mml:mo><mml:mrow><mml:mi>a</mml:mi></mml:mrow></mml:mrow></mml:mrow></mml:msup></mml:math>, the master theorem allows for quick and accurate complexity estimation without...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image