Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Deep Reinforcement Learning with Python

You're reading from   Deep Reinforcement Learning with Python Master classic RL, deep RL, distributional RL, inverse RL, and more with OpenAI Gym and TensorFlow

Arrow left icon
Product type Paperback
Published in Sep 2020
Publisher Packt
ISBN-13 9781839210686
Length 760 pages
Edition 2nd Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Sudharsan Ravichandiran Sudharsan Ravichandiran
Author Profile Icon Sudharsan Ravichandiran
Sudharsan Ravichandiran
Arrow right icon
View More author details
Toc

Table of Contents (22) Chapters Close

Preface 1. Fundamentals of Reinforcement Learning 2. A Guide to the Gym Toolkit FREE CHAPTER 3. The Bellman Equation and Dynamic Programming 4. Monte Carlo Methods 5. Understanding Temporal Difference Learning 6. Case Study – The MAB Problem 7. Deep Learning Foundations 8. A Primer on TensorFlow 9. Deep Q Network and Its Variants 10. Policy Gradient Method 11. Actor-Critic Methods – A2C and A3C 12. Learning DDPG, TD3, and SAC 13. TRPO, PPO, and ACKTR Methods 14. Distributional Reinforcement Learning 15. Imitation Learning and Inverse RL 16. Deep Reinforcement Learning with Stable Baselines 17. Reinforcement Learning Frontiers 18. Other Books You May Enjoy
19. Index
Appendix 1 – Reinforcement Learning Algorithms 1. Appendix 2 – Assessments

Summary

We started the chapter by understanding how to set up our machine by installing Anaconda and the Gym toolkit. We learned how to create a Gym environment using the gym.make() function. Later, we also explored how to obtain the state space of the environment using env.observation_space and the action space of the environment using env.action_space. We then learned how to obtain the transition probability and reward function of the environment using env.P. Following this, we also learned how to generate an episode using the Gym environment. We understood that in each step of the episode we select an action using the env.step() function.

We understood the classic control methods in the Gym environment. We learned about the continuous state space of the classic control environments and how they are stored in an array. We also learned how to balance a pole using a random agent. Later, we learned about interesting Atari game environments, and how Atari game environments are named in Gym, and then we explored their state space and action space. We also learned how to record the agent's gameplay using the wrapper class, and at the end of the chapter, we discovered other environments offered by Gym.

In the next chapter, we will learn how to find the optimal policy using two interesting algorithms called value iteration and policy iteration.

You have been reading a chapter from
Deep Reinforcement Learning with Python - Second Edition
Published in: Sep 2020
Publisher: Packt
ISBN-13: 9781839210686
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image