Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Building Data Science Solutions with Anaconda

You're reading from   Building Data Science Solutions with Anaconda A comprehensive starter guide to building robust and complete models

Arrow left icon
Product type Paperback
Published in May 2022
Publisher Packt
ISBN-13 9781800568785
Length 330 pages
Edition 1st Edition
Arrow right icon
Author (1):
Arrow left icon
Dan Meador Dan Meador
Author Profile Icon Dan Meador
Dan Meador
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. Part 1: The Data Science Landscape – Open Source to the Rescue
2. Chapter 1: Understanding the AI/ML landscape FREE CHAPTER 3. Chapter 2: Analyzing Open Source Software 4. Chapter 3: Using the Anaconda Distribution to Manage Packages 5. Chapter 4: Working with Jupyter Notebooks and NumPy 6. Part 2: Data Is the New Oil, Models Are the New Refineries
7. Chapter 5: Cleaning and Visualizing Data 8. Chapter 6: Overcoming Bias in AI/ML 9. Chapter 7: Choosing the Best AI Algorithm 10. Chapter 8: Dealing with Common Data Problems 11. Part 3: Practical Examples and Applications
12. Chapter 9: Building a Regression Model with scikit-learn 13. Chapter 10: Explainable AI - Using LIME and SHAP 14. Chapter 11: Tuning Hyperparameters and Versioning Your Model 15. Other Books You May Enjoy

Chapter 1: Understanding the AI/ML landscape

In this opening chapter, we'll give you a little appreciation and context to the why behind AI and machine learning (ML). The only data we have comes from the past, and using that will help us predict the future. We'll take a look at the massive amount of data that is coming into the world today and try to get a sense of the scale of what we have to work with.

The main goal of any type of software or algorithm is to solve business and real-world problems, so we'll also take a look at how the applications take shape. If we use a food analogy, data would be the ingredients, the algorithm would be the chef, and the meal created would be the model. You'll learn about the most commonly used types of models within the broader landscape and how to know what to use.

There are a huge number of tools that you could use as a data scientist, and so we will also touch on how you can use solutions such as those provided by Anaconda to be able to do the actual work you want to and be able to take action as your models grow stale (which they will). By the end of this chapter, you'll have an understanding of the value and landscape of AI and be able to jumpstart any project that you want to build.

AI is the most exciting technology of our age and, throughout this first chapter, these topics will give you the solid foundation that we'll build upon through the rest of the book. These are all key concepts that will be commonplace in your day-to-day journey, and which you'll find to be invaluable in accomplishing what you need to.

In this chapter, we're going to cover the following main topics:

  • Understanding the current state of AI and ML
  • Understanding the massive generation of new data
  • How to create business value with AI
  • Understanding the main types of ML models
  • Dealing with out-of-date models
  • Installing packages with Anaconda
You have been reading a chapter from
Building Data Science Solutions with Anaconda
Published in: May 2022
Publisher: Packt
ISBN-13: 9781800568785
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime