Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Advanced Elasticsearch 7.0

You're reading from   Advanced Elasticsearch 7.0 A practical guide to designing, indexing, and querying advanced distributed search engines

Arrow left icon
Product type Paperback
Published in Aug 2019
Publisher Packt
ISBN-13 9781789957754
Length 560 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Wai Tak Wong Wai Tak Wong
Author Profile Icon Wai Tak Wong
Wai Tak Wong
Arrow right icon
View More author details
Toc

Table of Contents (25) Chapters Close

Preface 1. Section 1: Fundamentals and Core APIs FREE CHAPTER
2. Overview of Elasticsearch 7 3. Index APIs 4. Document APIs 5. Mapping APIs 6. Anatomy of an Analyzer 7. Search APIs 8. Section 2: Data Modeling, Aggregations Framework, Pipeline, and Data Analytics
9. Modeling Your Data in the Real World 10. Aggregation Frameworks 11. Preprocessing Documents in Ingest Pipelines 12. Using Elasticsearch for Exploratory Data Analysis 13. Section 3: Programming with the Elasticsearch Client
14. Elasticsearch from Java Programming 15. Elasticsearch from Python Programming 16. Section 4: Elastic Stack
17. Using Kibana, Logstash, and Beats 18. Working with Elasticsearch SQL 19. Working with Elasticsearch Analysis Plugins 20. Section 5: Advanced Features
21. Machine Learning with Elasticsearch 22. Spark and Elasticsearch for Real-Time Analytics 23. Building Analytics RESTful Services 24. Other Books You May Enjoy

Sentiment analysis

Sentiment analysis is a research topic that analyzes opinions, attitudes, and emotions expressed in a given text. The methodology is to identify and extract subjective information by using context-mining techniques. The general purpose is to judge whether the potential emotions expressed are positive, negative, or neutral based on the source material. Many techniques, such as natural language processing (NLP), text analysis, computational linguistics, statistics, machine learning, and even biometrics, can be applied to sentiment analysis. So far, most users use Elasticsearch as the data store in sentiment analysis and the subsequent search or metric analysis. The workload for sentiment analysis is taken care of by third-party libraries. The following table introduces the two most commonly used libraries:

Name Programming
language
Description
TextBlob Python...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image