Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
The Applied Artificial Intelligence Workshop

You're reading from   The Applied Artificial Intelligence Workshop Start working with AI today, to build games, design decision trees, and train your own machine learning models

Arrow left icon
Product type Paperback
Published in Jul 2020
Publisher Packt
ISBN-13 9781800205819
Length 420 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (3):
Arrow left icon
Anthony So Anthony So
Author Profile Icon Anthony So
Anthony So
Zsolt Nagy Zsolt Nagy
Author Profile Icon Zsolt Nagy
Zsolt Nagy
William So William So
Author Profile Icon William So
William So
Arrow right icon
View More author details
Toc

Table of Contents (8) Chapters Close

Preface
1. Introduction to Artificial Intelligence 2. An Introduction to Regression FREE CHAPTER 3. An Introduction to Classification 4. An Introduction to Decision Trees 5. Artificial Intelligence: Clustering 6. Neural Networks and Deep Learning Appendix

Game AI with the Minmax Algorithm and Alpha-Beta Pruning

In the first two sections, we saw how hard it was to create a winning strategy for a simple game such as tic-tac-toe. The previous section introduced a few structures for solving search problems with the A* algorithm. We also saw that tools such as the simpleai library help us to reduce the effort we put in to describe a task with code.

We will use all of this knowledge to supercharge our game AI skills and solve more complex problems.

Search Algorithms for Turn-Based Multiplayer Games

Turn-based multiplayer games such as tic-tac-toe are similar to pathfinding problems. We have an initial state and we have a set of end states where we win the game.

The challenge with turn-based multiplayer games is the combinatorial explosion of the opponent's possible moves. This difference justifies treating turn-based games differently to a regular pathfinding problem.

For instance, in the tic-tac-toe game, from an empty board, we can select one of the nine cells and place our sign there, assuming we start the game. Let's denote this algorithm with the succ function, symbolizing the creation of successor states. Consider we have the initial state denoted by Si.

Here, we have succ(Si) returns [ S1, S2, ..., Sn ], where S1, S2, ..., Sn are successor states:

Figure 1.20: Tree diagram denoting the successor states of the function

Figure 1.20: Tree diagram denoting the successor states of the function

Then, the opponent also makes a move, meaning that from each possible state, we have to examine even more states:

Figure 1.21: Tree diagram denoting parent-successor relationships

Figure 1.21: Tree diagram denoting parent-successor relationships

The expansion of possible future states stops in one of two cases:

  • The game ends.
  • Due to resource limitations, it is not worth explaining any more moves beyond a certain depth for the state of a certain utility.

Once we stop expanding, we have to make a static heuristic evaluation of the state. This is exactly what we did previously with the A* algorithm, when choosing the best move; however, we never considered future states.

Therefore, even though our algorithm became more and more complex, without using the knowledge of possible future states, we had a hard time detecting whether our current move would likely be a winning one or a losing one.

The only way for us to take control of the future was to change our heuristic while knowing how many games we would win, lose, or tie in the future. We could either maximize our wins or minimize our losses. We still did not dig deep enough to see whether our losses could have been avoided through smarter play on the part of the AI.

All these problems can be avoided by digging deeper into future states and recursively evaluating the utility of the branches.

To consider future states, we will learn about the Minmax algorithm and its variant, the NegaMax algorithm.

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image