Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Spark for Data Science

You're reading from   Spark for Data Science Analyze your data and delve deep into the world of machine learning with the latest Spark version, 2.0

Arrow left icon
Product type Paperback
Published in Sep 2016
Publisher Packt
ISBN-13 9781785885655
Length 344 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Bikramaditya Singhal Bikramaditya Singhal
Author Profile Icon Bikramaditya Singhal
Bikramaditya Singhal
Srinivas Duvvuri Srinivas Duvvuri
Author Profile Icon Srinivas Duvvuri
Srinivas Duvvuri
Arrow right icon
View More author details
Toc

Table of Contents (12) Chapters Close

Preface 1. Big Data and Data Science – An Introduction FREE CHAPTER 2. The Spark Programming Model 3. Introduction to DataFrames 4. Unified Data Access 5. Data Analysis on Spark 6. Machine Learning 7. Extending Spark with SparkR 8. Analyzing Unstructured Data 9. Visualizing Big Data 10. Putting It All Together 11. Building Data Science Applications

Chapter 3.  Introduction to DataFrames

To solve any real-world big data analytics problem, access to an efficient and scalable computing system is definitely mandatory. However, if the computing power is not accessible to the target users in a way that's easy and familiar to them, it will barely make any sense. Interactive data analysis gets easier with datasets that can be represented as named columns, which was not the case with plain RDDs. So, the need for a schema-based approach to represent data in a standardized way was the inspiration behind DataFrames.

The previous chapter outlined some design aspects of Spark. We learnt how Spark enabled distributed data processing on distributed collections of data (RDDs) through in-memory computation. It covered most of the points that revealed Spark as a fast, efficient, and scalable computing platform. In this chapter, we will see how Spark introduced the DataFrame API to make data scientists feel at home to carry out their usual...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image