Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases now! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Scala for Machine Learning, Second Edition

You're reading from   Scala for Machine Learning, Second Edition Build systems for data processing, machine learning, and deep learning

Arrow left icon
Product type Paperback
Published in Sep 2017
Publisher Packt
ISBN-13 9781787122383
Length 740 pages
Edition 2nd Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Patrick R. Nicolas Patrick R. Nicolas
Author Profile Icon Patrick R. Nicolas
Patrick R. Nicolas
Arrow right icon
View More author details
Toc

Table of Contents (21) Chapters Close

Preface 1. Getting Started FREE CHAPTER 2. Data Pipelines 3. Data Preprocessing 4. Unsupervised Learning 5. Dimension Reduction 6. Naïve Bayes Classifiers 7. Sequential Data Models 8. Monte Carlo Inference 9. Regression and Regularization 10. Multilayer Perceptron 11. Deep Learning 12. Kernel Models and SVM 13. Evolutionary Computing 14. Multiarmed Bandits 15. Reinforcement Learning 16. Parallelism in Scala and Akka 17. Apache Spark MLlib A. Basic Concepts B. References Index

Chapter 7

[7:1] A tutorial on Hidden Markov Models and Selected Applications in Speech Recognition, L. Rabiner - Proceedings of the IEEE Volume 77, Feb 1989 - http://www.cs.ubc.ca/~murphyk/Bayes/rabiner.pdf

[7:2] CRF Java library v 1.3 S. Sarawagi - Indian Institute of Technology, Bombay 2008 - http://crf.sourceforge.net/

[7:3] Introduction to Machine Learning §13.2 Discrete Markov Processes E. Alpaydin - The MIT Press 2004

[7:4] A Revealing Introduction to Hidden Markov Models M. Stamp - Dept. of Computer Science, San Jose State University 2012 - http://www.cs.sjsu.edu/~stamp/RUA/HMM.pdf

[7:5] A brief introduction to Dynamic Programming A. Kasibhatla - Nanocad Lab University of California, Los Angeles 2010 -http://nanocad.ee.ucla.edu/pub/Main/SnippetTutorial/Amar_DP_Intro.pdf

[7:6] Pattern Recognition and Machine Learning §13.2.1 Maximum Likelihood for the HMM C. Bishop –Springer 2006

[7:7] Dynamic Programing in Machine learning – Part 3: Viterbi Algorithm and Machine...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime