Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases now! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Scala for Machine Learning, Second Edition

You're reading from   Scala for Machine Learning, Second Edition Build systems for data processing, machine learning, and deep learning

Arrow left icon
Product type Paperback
Published in Sep 2017
Publisher Packt
ISBN-13 9781787122383
Length 740 pages
Edition 2nd Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Patrick R. Nicolas Patrick R. Nicolas
Author Profile Icon Patrick R. Nicolas
Patrick R. Nicolas
Arrow right icon
View More author details
Toc

Table of Contents (21) Chapters Close

Preface 1. Getting Started FREE CHAPTER 2. Data Pipelines 3. Data Preprocessing 4. Unsupervised Learning 5. Dimension Reduction 6. Naïve Bayes Classifiers 7. Sequential Data Models 8. Monte Carlo Inference 9. Regression and Regularization 10. Multilayer Perceptron 11. Deep Learning 12. Kernel Models and SVM 13. Evolutionary Computing 14. Multiarmed Bandits 15. Reinforcement Learning 16. Parallelism in Scala and Akka 17. Apache Spark MLlib A. Basic Concepts B. References Index

Finances 101

The exercises presented throughout the book are related to historical financial data and require the reader to have some basic understanding of financial markets and reports.

Fundamental analysis

Fundamental analysis is a set of techniques to evaluate a security (stock, bond, currency, or commodity) that entails attempting to measure its intrinsic value by examining related to both macro and micro financial and economy reports. Fundamental analysis is usually applied to estimate the optimal price of a stock using a variety of financial ratios.

Numerous financial metrics are used throughout the book. Here are the definitions of the most commonly used metrics [A:16]:

  • Earnings per share (EPS): This is the ratio of net earnings over number of outstanding shares.
  • Price/Earnings Ratio (PE): This is the ratio of market price per share over earnings per share.
  • Price/Sales Ratio (PS): This is the ratio of market price per share over gross sales (or revenue).
  • Price/Book Value Ratio (PB): This...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime