This chapter presents recipes to build text classifiers. This includes extracting vital features from the database, training, testing, and validating the text classifier. Initially, a text classifier is trained using commonly used words. Later, the trained text classifier is used for prediction. Building a text classifier includes preprocessing the data using tokenization, stemming text data, dividing text using chunking, and building a bag-of-words model.
United States
Great Britain
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Singapore
Hungary
Ukraine
Luxembourg
Estonia
Lithuania
South Korea
Turkey
Switzerland
Colombia
Taiwan
Chile
Norway
Ecuador
Indonesia
New Zealand
Cyprus
Denmark
Finland
Poland
Malta
Czechia
Austria
Sweden
Italy
Egypt
Belgium
Portugal
Slovenia
Ireland
Romania
Greece
Argentina
Netherlands
Bulgaria
Latvia
South Africa
Malaysia
Japan
Slovakia
Philippines
Mexico
Thailand