Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
R for Data Science

You're reading from   R for Data Science Learn and explore the fundamentals of data science with R

Arrow left icon
Product type Paperback
Published in Dec 2014
Publisher
ISBN-13 9781784390860
Length 364 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Dan Toomey Dan Toomey
Author Profile Icon Dan Toomey
Dan Toomey
Arrow right icon
View More author details
Toc

Summary

In this chapter, we looked into various methods of machine learning, including both supervised and unsupervised learning. With supervised learning, we have a target variable we are trying to estimate. With unsupervised, we only have a possible set of predictor variables and are looking for patterns.

In supervised learning, we looked into using a number of methods, including decision trees, regression, neural networks, support vector machines, and Bayesian learning. In unsupervised learning, we used cluster analysis, density estimation, hidden Markov models, and blind signal separation.

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime