Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
R Deep Learning Cookbook

You're reading from   R Deep Learning Cookbook Solve complex neural net problems with TensorFlow, H2O and MXNet

Arrow left icon
Product type Paperback
Published in Aug 2017
Publisher Packt
ISBN-13 9781787121089
Length 288 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Achyutuni Sri Krishna Rao Achyutuni Sri Krishna Rao
Author Profile Icon Achyutuni Sri Krishna Rao
Achyutuni Sri Krishna Rao
PKS Prakash PKS Prakash
Author Profile Icon PKS Prakash
PKS Prakash
Arrow right icon
View More author details
Toc

Table of Contents (11) Chapters Close

Preface 1. Getting Started FREE CHAPTER 2. Deep Learning with R 3. Convolution Neural Network 4. Data Representation Using Autoencoders 5. Generative Models in Deep Learning 6. Recurrent Neural Networks 7. Reinforcement Learning 8. Application of Deep Learning in Text Mining 9. Application of Deep Learning to Signal processing 10. Transfer Learning

Performing a full run of training an RBM


Using the same RBM setup mentioned in the preceding recipe, train the RBM on the user ratings dataset (trX) using 20 hidden nodes. To keep a track of the optimization, the MSE is calculated after every batch of 1,000 rows. The following image shows the declining trend of mean squared reconstruction errors computed for 500 batches (equal to epochs):

Looking into RBM recommendations: Let's now look into the recommendations generated by RBM-based collaborative filtering for a given user ID. Here, we will look into the top-rated genres and top-recommended genres of this user ID, along with the top 10 movie recommendations.

The following image illustrates a list of top-rated genres:

The following image illustrates a list of top-recommended genres:

Getting ready

This section provides the requirements for collaborative filtering the output evaluation:

  • TensorFlow in R is installed and set up
  • The movies.dat and ratings.dat datasets are loaded in environment
  • The recipe...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image