Summary
In this chapter, you have learned about the most important concepts behind multi-layer artificial neural networks, which are currently the hottest topic in machine learning research. In Chapter 2, Training Machine Learning Algorithms for Classification, we started our journey with simple single-layer neural network structures and now we have connected multiple neurons to a powerful neural network architecture to solve complex problems such as handwritten digit recognition. We demystified the popular backpropagation algorithm, which is one of the building blocks of many neural network models that are used in deep learning. After learning about the backpropagation algorithm, we were able to update the weights of such a complex neural network. We also added useful modifications such as mini-batch learning and an adaptive learning rate that allows us to train a neural network more efficiently.