Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Python Data Cleaning Cookbook

You're reading from   Python Data Cleaning Cookbook Prepare your data for analysis with pandas, NumPy, Matplotlib, scikit-learn, and OpenAI

Arrow left icon
Product type Paperback
Published in May 2024
Publisher Packt
ISBN-13 9781803239873
Length 486 pages
Edition 2nd Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Michael Walker Michael Walker
Author Profile Icon Michael Walker
Michael Walker
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. Anticipating Data Cleaning Issues When Importing Tabular Data with pandas 2. Anticipating Data Cleaning Issues When Working with HTML, JSON, and Spark Data FREE CHAPTER 3. Taking the Measure of Your Data 4. Identifying Outliers in Subsets of Data 5. Using Visualizations for the Identification of Unexpected Values 6. Cleaning and Exploring Data with Series Operations 7. Identifying and Fixing Missing Values 8. Encoding, Transforming, and Scaling Features 9. Fixing Messy Data When Aggregating 10. Addressing Data Issues When Combining DataFrames 11. Tidying and Reshaping Data 12. Automate Data Cleaning with User-Defined Functions, Classes, and Pipelines 13. Index

Cleaning missing values

We go over some of the most straightforward approaches for handling missing values in this recipe. This includes dropping observations where there are missing values; assigning a sample-wide summary statistic, such as the mean, to the missing values; and assigning values based on the mean value for an appropriate subset of the data.

How to do it...

We will find and then remove observations from the NLS data that have mainly missing data for key variables. We will also use pandas methods to assign alternative values to missing values, such as the variable mean:

  1. Let’s load the NLS data and select some of the educational data.
    import pandas as pd
    nls97 = pd.read_csv("data/nls97g.csv", low_memory=False)
    nls97.set_index("personid", inplace=True)
    schoolrecordlist = ['satverbal','satmath','gpaoverall',
      'gpaenglish',  'gpamath','gpascience','highestdegree...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime