Digital forensics
Identifying and analyzing information security incidents and the related digital evidence is called digital forensics. Generally, forensic science is the scientific method of gathering and examining data about the past to extract useful information related to the case under investigation. Digital forensics is the analysis of digital evidence in order to answer questions related to a digital incident, which takes place at the time of the analysis in case of a live analysis or takes place in the past; this is called postmortem analysis.
Postmortem analysis is applied after the incident has occurred, and it usually takes place in all cases. However, some cases require the analysis to be conducted during the incident. Generally, the analysis can confirm or refute a hypothesis about the incident to rebuild a full picture about the activities of both the attacker and the victim during the time of the incident.
One of the definitions of digital forensics is Rodney McKemmish's, which stated the following:
"Forensic Computing is the process of identifying, preserving, analyzing, and presenting digital evidence in a manner that is legally acceptable."
From this, we can divide the digital forensics analysis into four subphases, which also represent the four principles of a successful process:
- Identification: The investigator or the analyst must understand the circumstances of the incident and collect the data that is important to the investigation. They need to understand the usual behavior of the systems and the structure of the network, and they need to interview responsible individuals if needed. These are important to totally understand the environment and handle the possible evidence properly so that they do not lose valuable information or miss collecting related evidence.
During incident handling, the first responder may need to acquire a live system. Each acquisition or analysis step performed on a live system will leave a trace, and in some cases, this overwrites previous data or traces either in the system memory or on the hard drive. The responder must understand the consequences of using the handling tools on the system and try to minimize their tools' traces on the system in order to minimize data loss during incident handling.
- Acquisition and preservation: The acquisition methods of digital evidence must ensure integrity preservation of the evidence and justify this when needed.
Acquiring all the data from the incident scene will help in the analysis phase to build a whole picture of the incident. In a busy working environment, retrieving the status of the incident scene won't be easy. One way to memorize this is to take notes about all the systems in the scene, and in some cases, taking snapshots will be beneficial to remembering how these devices were connected.
- Analysis: Different platforms and technologies mean different types of evidence, which need to be examined. Therefore, the analyst or the investigator needs to have the required technical and investigation skills to find and extract the related information to the case under investigation.
The analyst needs to examine all the data collected even if the case has been solved. Examining all the evidence could provide new clues or state new possibilities.
- Reporting and presentation of the digital evidence: This should summarize the first three phases of the process. It should include the steps taken in order to identify, seize, and examine the digital evidence. Besides including the findings of the examination, the conclusion of the findings and the expert opinion must be included in the report.