Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Node Cookbook

You're reading from   Node Cookbook Discover solutions, techniques, and best practices for server-side web development with Node.js 14

Arrow left icon
Product type Paperback
Published in Nov 2020
Publisher Packt
ISBN-13 9781838558758
Length 512 pages
Edition 4th Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Bethany Griggs Bethany Griggs
Author Profile Icon Bethany Griggs
Bethany Griggs
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. Chapter 1: Introducing Node.js 14 2. Chapter 2: Handling I/O FREE CHAPTER 3. Chapter 3: Streams, Streams, Streams 4. Chapter 4: Using Web Protocols 5. Chapter 5: Developing Node.js modules 6. Chapter 6: Exploring Node.js web Frameworks 7. Chapter 7: Working with Databases 8. Chapter 8: Testing with Node.js 9. Chapter 9: Securing Node.js Applications 10. Chapter 10: Performance Optimization 11. Chapter 11: Deploying Node.js Microservices 12. Chapter 12: Debugging Node.js 13. Other Books You May Enjoy

Detecting memory leaks

Memory leaks can have a severe impact on the performance of your application, and in some cases, can even cause your application to crash.

V8 stores objects and dynamic data in its heap, where a heap is a binary tree-based data structure that is geared toward organizing direct relationships between parent and child nodes. The V8 Garbage Collector (GC) is responsible for managing the heap. The V8 GC reclaims any memory that is no longer in use – freeing the memory so that it can be reused.

A memory leak occurs when a block of memory is never reclaimed by the GC and is therefore idle and inefficient. This results in pieces of unused memory remaining on the heap. The performance of your application can be impacted when many of these unused memory blocks accumulate in the heap. In the worst cases, the unused memory could hog all of the available heap space, which in turn can cause your application to crash.

In this recipe, we'll learn how to...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image