Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Mastering Reinforcement Learning with Python

You're reading from   Mastering Reinforcement Learning with Python Build next-generation, self-learning models using reinforcement learning techniques and best practices

Arrow left icon
Product type Paperback
Published in Dec 2020
Publisher Packt
ISBN-13 9781838644147
Length 544 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Enes Bilgin Enes Bilgin
Author Profile Icon Enes Bilgin
Enes Bilgin
Arrow right icon
View More author details
Toc

Table of Contents (24) Chapters Close

Preface 1. Section 1: Reinforcement Learning Foundations
2. Chapter 1: Introduction to Reinforcement Learning FREE CHAPTER 3. Chapter 2: Multi-Armed Bandits 4. Chapter 3: Contextual Bandits 5. Chapter 4: Makings of a Markov Decision Process 6. Chapter 5: Solving the Reinforcement Learning Problem 7. Section 2: Deep Reinforcement Learning
8. Chapter 6: Deep Q-Learning at Scale 9. Chapter 7: Policy-Based Methods 10. Chapter 8: Model-Based Methods 11. Chapter 9: Multi-Agent Reinforcement Learning 12. Section 3: Advanced Topics in RL
13. Chapter 10: Introducing Machine Teaching 14. Chapter 11: Achieving Generalization and Overcoming Partial Observability 15. Chapter 12: Meta-Reinforcement Learning 16. Chapter 13: Exploring Advanced Topics 17. Section 4: Applications of RL
18. Chapter 14: Solving Robot Learning 19. Chapter 15: Supply Chain Management 20. Chapter 16: Personalization, Marketing, and Finance 21. Chapter 17: Smart City and Cybersecurity 22. Chapter 18: Challenges and Future Directions in Reinforcement Learning 23. Other Books You May Enjoy

Challenges and future directions

You could be wondering why we are back to talking about RL challenges after finishing an advanced-level book on this topic. Indeed, throughout the book, we presented many approaches to mitigate them. On the other hand, we cannot claim these challenges are solved. So, it is important to call them out and discuss the future directions for each in a concise list to give you a mental map and a compass to navigate through them.

Let's start our discussion with one of the most important challenges: Sample efficiency.

Sample efficiency

As you are now well aware, it takes a lot of data to train an RL model. OpenAI Five, who became a world-class player in the strategy game Dota 2, took 128,000 CPUs and 256 CPUs to train, over many months, collecting a total of 900 years' worth of game experience per day (OpenAI, 2018). RL algorithms are benchmarked on their performances after trained over 10 billion Atari frames (Kapturowski, 2019). This is...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime