Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Mastering Machine Learning Algorithms

You're reading from   Mastering Machine Learning Algorithms Expert techniques to implement popular machine learning algorithms and fine-tune your models

Arrow left icon
Product type Paperback
Published in May 2018
Publisher Packt
ISBN-13 9781788621113
Length 576 pages
Edition 1st Edition
Arrow right icon
Author (1):
Arrow left icon
Giuseppe Bonaccorso Giuseppe Bonaccorso
Author Profile Icon Giuseppe Bonaccorso
Giuseppe Bonaccorso
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Machine Learning Model Fundamentals 2. Introduction to Semi-Supervised Learning FREE CHAPTER 3. Graph-Based Semi-Supervised Learning 4. Bayesian Networks and Hidden Markov Models 5. EM Algorithm and Applications 6. Hebbian Learning and Self-Organizing Maps 7. Clustering Algorithms 8. Ensemble Learning 9. Neural Networks for Machine Learning 10. Advanced Neural Models 11. Autoencoders 12. Generative Adversarial Networks 13. Deep Belief Networks 14. Introduction to Reinforcement Learning 15. Advanced Policy Estimation Algorithms 16. Other Books You May Enjoy

Hebb's rule


Hebb's rule has been proposed as a conjecture in 1949 by the Canadian psychologist Donald Hebb to describe the synaptic plasticity of natural neurons. A few years after its publication, this rule was confirmed by neurophysiological studies, and many research studies have shown its validity in many application, of Artificial Intelligence. Before introducing the rule, it's useful to describe the generic Hebbian neuron, as shown in the following diagram:

Generic Hebbian neuron with a vectorial input

The neuron is a simple computational unit that receives an input vector x, from the pre-synaptic units (other neurons or perceptive systems) and outputs a single scalar value, y. The internal structure of the neuron is represented by a weight vector, w, that models the strength of each synapse. For a single multi-dimensional input, the output is obtained as follows: 

In this model, we are assuming that each input signal is encoded in the corresponding component of the vector, x; therefore...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime