Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Machine Learning Engineering with MLflow

You're reading from   Machine Learning Engineering with MLflow Manage the end-to-end machine learning life cycle with MLflow

Arrow left icon
Product type Paperback
Published in Aug 2021
Publisher Packt
ISBN-13 9781800560796
Length 248 pages
Edition 1st Edition
Tools
Arrow right icon
Author (1):
Arrow left icon
Natu Lauchande Natu Lauchande
Author Profile Icon Natu Lauchande
Natu Lauchande
Arrow right icon
View More author details
Toc

Table of Contents (18) Chapters Close

Preface 1. Section 1: Problem Framing and Introductions
2. Chapter 1: Introducing MLflow FREE CHAPTER 3. Chapter 2: Your Machine Learning Project 4. Section 2: Model Development and Experimentation
5. Chapter 3: Your Data Science Workbench 6. Chapter 4: Experiment Management in MLflow 7. Chapter 5: Managing Models with MLflow 8. Section 3: Machine Learning in Production
9. Chapter 6: Introducing ML Systems Architecture 10. Chapter 7: Data and Feature Management 11. Chapter 8: Training Models with MLflow 12. Chapter 9: Deployment and Inference with MLflow 13. Section 4: Advanced Topics
14. Chapter 10: Scaling Up Your Machine Learning Workflow 15. Chapter 11: Performance Monitoring 16. Chapter 12: Advanced Topics with MLflow 17. Other Books You May Enjoy

Making a cloud deployment with AWS SageMaker

In the last few years, services such as AWS SageMaker have been gaining ground as an engine to run ML workloads. MLflow provides integrations and easy-to-use commands to deploy your model into the SageMaker infrastructure. The execution of this section will take several minutes (5 to 10 minutes depending on your connection) due to the need to build large Docker images and push the images to the Docker Registry.

The following is a list of some critical prerequisites for you to follow along:

  • The AWS CLI configured locally with a default profile (for more details, you can look at https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html).
  • AWS access in the account to SageMaker and its dependencies.
  • AWS access in the account to push to Amazon Elastic Container Registry (ECR) service.
  • Your MLflow server needs to be running as mentioned in the first Starting up a local model registry section.

To deploy...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image