Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Learning R for Geospatial Analysis

You're reading from   Learning R for Geospatial Analysis Leverage the power of R to elegantly manage crucial geospatial analysis tasks

Arrow left icon
Product type Paperback
Published in Dec 2014
Publisher Packt
ISBN-13 9781783984367
Length 364 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Michael Dorman Michael Dorman
Author Profile Icon Michael Dorman
Michael Dorman
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. The R Environment FREE CHAPTER 2. Working with Vectors and Time Series 3. Working with Tables 4. Working with Rasters 5. Working with Points, Lines, and Polygons 6. Modifying Rasters and Analyzing Raster Time Series 7. Combining Vector and Raster Datasets 8. Spatial Interpolation of Point Data 9. Advanced Visualization of Spatial Data A. External Datasets Used in Examples
B. Cited References
Index

Summary


In this chapter, we closed the gap between the two main spatial data types (rasters and vector layers) that we dealt with separately in the previous three chapters. We now know how to make the conversion from a vector layer to raster and vice versa, and we can transfer the geometry and data components from one data model to another when the need arises. We also saw how raster values can be extracted from a raster according to a vector layer, a fundamental step in many analysis tasks involving raster data.

At this point, we conclude the review of basic spatial data analysis tool implementation in R. We now know how to work with—including import, transform, and combine in various ways—rasters and vector layers in R. In the next two chapters, examples of more specialized applications of R for spatial data analysis are going to be presented; specifically, spatial interpolation and visualization of spatial data.

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image