Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Learning pandas

You're reading from   Learning pandas High performance data manipulation and analysis using Python

Arrow left icon
Product type Paperback
Published in Jun 2017
Publisher
ISBN-13 9781787123137
Length 446 pages
Edition 2nd Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Michael Heydt Michael Heydt
Author Profile Icon Michael Heydt
Michael Heydt
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. pandas and Data Analysis 2. Up and Running with pandas FREE CHAPTER 3. Representing Univariate Data with the Series 4. Representing Tabular and Multivariate Data with the DataFrame 5. Manipulating DataFrame Structure 6. Indexing Data 7. Categorical Data 8. Numerical and Statistical Methods 9. Accessing Data 10. Tidying Up Your Data 11. Combining, Relating, and Reshaping Data 12. Data Aggregation 13. Time-Series Modelling 14. Visualization 15. Historical Stock Price Analysis

Handling duplicate data

The data in your sample can often contain duplicate rows. This is just a reality of dealing with data that is collected automatically, or even a situation created when manually collecting data. In these situations, it is often considered best to error on the side of having duplicates instead of missing data, especially if the data can be considered to be idempotent. However, duplicate data can increase the size of the dataset, and if it is not idempotent, then it would not be appropriate to process the duplicates.

Pandas provides the .duplicates() method to facilitate finding duplicate data. This method returns a Boolean Series, where each entry represents whether or not the row is a duplicate. A True value represents that the specific row has appeared earlier in the DataFrame object, with all the column values identical.

The following demonstrates this...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image