Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Keras Reinforcement Learning Projects

You're reading from   Keras Reinforcement Learning Projects 9 projects exploring popular reinforcement learning techniques to build self-learning agents

Arrow left icon
Product type Paperback
Published in Sep 2018
Publisher Packt
ISBN-13 9781789342093
Length 288 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Giuseppe Ciaburro Giuseppe Ciaburro
Author Profile Icon Giuseppe Ciaburro
Giuseppe Ciaburro
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Overview of Keras Reinforcement Learning FREE CHAPTER 2. Simulating Random Walks 3. Optimal Portfolio Selection 4. Forecasting Stock Market Prices 5. Delivery Vehicle Routing Application 6. Continuous Balancing of a Rotating Mechanical System 7. Dynamic Modeling of a Segway as an Inverted Pendulum System 8. Robot Control System Using Deep Reinforcement Learning 9. Handwritten Digit Recognizer 10. Playing the Board Game Go 11. What's Next? 12. Other Books You May Enjoy

Simulating Random Walks

Stochastic processes involve systems that evolve over time (but also more generally in space) according to probabilistic laws. Such systems or models describe the complex phenomena of the real world that have the possibility of being random. These phenomena are more frequent than we can believe. We encounter these phenomena when the quantities we are interested in are not predictable with absolute certainty. However, when such phenomena show a variability of possible outcomes that can be somehow explained or described, then we can introduce a probabilistic model of the phenomenon.

For example, say that we are examining the motion involved in a random walking movement. We study the motion of an object that is constrained to move along a straight line in the two directions allowed. At each movement, it moves randomly to the right or left, each step being...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image