Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Java for Data Science

You're reading from   Java for Data Science Examine the techniques and Java tools supporting the growing field of data science

Arrow left icon
Product type Paperback
Published in Jan 2017
Publisher Packt
ISBN-13 9781785280115
Length 386 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Jennifer L. Reese Jennifer L. Reese
Author Profile Icon Jennifer L. Reese
Jennifer L. Reese
Richard M. Reese Richard M. Reese
Author Profile Icon Richard M. Reese
Richard M. Reese
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Getting Started with Data Science FREE CHAPTER 2. Data Acquisition 3. Data Cleaning 4. Data Visualization 5. Statistical Data Analysis Techniques 6. Machine Learning 7. Neural Networks 8. Deep Learning 9. Text Analysis 10. Visual and Audio Analysis 11. Mathematical and Parallel Techniques for Data Analysis 12. Bringing It All Together

Implementing named entity recognition

This is sometimes referred to as finding people and things. Given a text segment, we may want to identify all the names of people present. However, this is not always easy because a name such as Rob may also be used as a verb.

In this section, we will demonstrate how to use OpenNLP's TokenNameFinderModel class to find names and locations in text. While there are other entities we may want to find, this example will demonstrate the basics of the technique. We begin with names.

Most names occur within a single line. We do not want to use multiple lines because an entity such as a state might inadvertently be identified incorrectly. Consider the following sentences:

Jim headed north. Dakota headed south.

If we ignored the period, then the state of North Dakota might be identified as a location, when in fact it is not present.

Using OpenNLP to perform NER

We start our example with a try-catch block to handle exceptions. OpenNLP uses models that have been...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image