We covered a lot of different things in this chapter. We started by learning the basics of a neural network and then we gradually proceeded. We learned the two most powerful types of neural networks used today—CNNs and RNNs—and we also learned about them on a high level, but without skipping their foundational units. We learned that as the complexity in a neural network increases, it requires a lot of computational power, which standard computers may fail to cater for we saw how this problem can be overcome by configuring a deep learning development environment using two different providers—AWS and Crestle. We explored Jupyter Notebooks, a powerful tool for performing deep learning tasks. We learned about the usage of two very popular Python libraries—NumPy and pandas. Both of these libraries are extensively used when performing deep learning...
Germany
Slovakia
Canada
Brazil
Singapore
Hungary
Philippines
Mexico
Thailand
Ukraine
Luxembourg
Estonia
Lithuania
Norway
Chile
United States
Great Britain
India
Spain
South Korea
Ecuador
Colombia
Taiwan
Switzerland
Indonesia
Cyprus
Denmark
Finland
Poland
Malta
Czechia
New Zealand
Austria
Turkey
France
Sweden
Italy
Egypt
Belgium
Portugal
Slovenia
Ireland
Romania
Greece
Argentina
Malaysia
South Africa
Netherlands
Bulgaria
Latvia
Australia
Japan
Russia