Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Hands-On Neural Networks with Keras

You're reading from   Hands-On Neural Networks with Keras Design and create neural networks using deep learning and artificial intelligence principles

Arrow left icon
Product type Paperback
Published in Mar 2019
Publisher Packt
ISBN-13 9781789536089
Length 462 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Niloy Purkait Niloy Purkait
Author Profile Icon Niloy Purkait
Niloy Purkait
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. Section 1: Fundamentals of Neural Networks FREE CHAPTER
2. Overview of Neural Networks 3. A Deeper Dive into Neural Networks 4. Signal Processing - Data Analysis with Neural Networks 5. Section 2: Advanced Neural Network Architectures
6. Convolutional Neural Networks 7. Recurrent Neural Networks 8. Long Short-Term Memory Networks 9. Reinforcement Learning with Deep Q-Networks 10. Section 3: Hybrid Model Architecture
11. Autoencoders 12. Generative Networks 13. Section 4: Road Ahead
14. Contemplating Present and Future Developments 15. Other Books You May Enjoy

Why use neural networks?

As we just saw, a basic value iteration approach can be used to update the Bellman equation and iteratively find ideal state-action pairs to optimally navigate a given environment. This approach actually stores new information at each time step, iteratively making our algorithm more intelligent. However, there is a problem with this method as well. It's simply not scalable! The taxi cab environment is simple enough, with 500 states and 6 actions, to be solved by iteratively updating the Q-values, thereby estimating the value of each individual state-action pair. However, more complex simulations, like a video game, may potentially have millions of states and hundreds of actions, which is why computing the quality of each state-action pair becomes computationally unfeasible and logically inefficient. The only option we are left with, in such circumstances...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime