Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Deep Reinforcement Learning Hands-On

You're reading from   Deep Reinforcement Learning Hands-On Apply modern RL methods to practical problems of chatbots, robotics, discrete optimization, web automation, and more

Arrow left icon
Product type Paperback
Published in Jan 2020
Publisher Packt
ISBN-13 9781838826994
Length 826 pages
Edition 2nd Edition
Languages
Concepts
Arrow right icon
Author (1):
Arrow left icon
Maxim Lapan Maxim Lapan
Author Profile Icon Maxim Lapan
Maxim Lapan
Arrow right icon
View More author details
Toc

Table of Contents (28) Chapters Close

Preface 1. What Is Reinforcement Learning? 2. OpenAI Gym FREE CHAPTER 3. Deep Learning with PyTorch 4. The Cross-Entropy Method 5. Tabular Learning and the Bellman Equation 6. Deep Q-Networks 7. Higher-Level RL Libraries 8. DQN Extensions 9. Ways to Speed up RL 10. Stocks Trading Using RL 11. Policy Gradients – an Alternative 12. The Actor-Critic Method 13. Asynchronous Advantage Actor-Critic 14. Training Chatbots with RL 15. The TextWorld Environment 16. Web Navigation 17. Continuous Action Space 18. RL in Robotics 19. Trust Regions – PPO, TRPO, ACKTR, and SAC 20. Black-Box Optimization in RL 21. Advanced Exploration 22. Beyond Model-Free – Imagination 23. AlphaGo Zero 24. RL in Discrete Optimization 25. Multi-agent RL 26. Other Books You May Enjoy
27. Index

Why I wrote this book

This book was written as an attempt to fill the obvious gap in practical and structured information about RL methods and approaches. On the one hand, there is lots of research activity all around the world. New research papers are being published almost every day, and a large portion of deep learning (DL) conferences, such as Neural Information Processing Systems (NeurIPS) or the International Conference on Learning Representations (ICLR), are dedicated to RL methods. There are also several large research groups focusing on the application of RL methods to robotics, medicine, multi-agent systems, and others.

Information about the recent research is widely available, but it is too specialized and abstract to be easily understandable. Even worse is the situation surrounding the practical aspect of RL, as it is not always obvious how to make the step from an abstract method described in its mathematical-heavy form in a research paper to a working implementation solving an actual problem.

This makes it hard for somebody interested in the field to get a clear understanding of the methods and ideas behind papers and conference talks. There are some very good blog posts about various RL aspects that are illustrated with working examples, but the limited format of a blog post allows authors to describe only one or two methods, without building a complete structured picture and showing how different methods are related to each other. This book is my attempt to address this issue.

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime