Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases now! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Deep Learning with PyTorch Lightning

You're reading from   Deep Learning with PyTorch Lightning Swiftly build high-performance Artificial Intelligence (AI) models using Python

Arrow left icon
Product type Paperback
Published in Apr 2022
Publisher Packt
ISBN-13 9781800561618
Length 366 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Dheeraj Arremsetty Dheeraj Arremsetty
Author Profile Icon Dheeraj Arremsetty
Dheeraj Arremsetty
Kunal Sawarkar Kunal Sawarkar
Author Profile Icon Kunal Sawarkar
Kunal Sawarkar
Arrow right icon
View More author details
Toc

Table of Contents (15) Chapters Close

Preface 1. Section 1: Kickstarting with PyTorch Lightning
2. Chapter 1: PyTorch Lightning Adventure FREE CHAPTER 3. Chapter 2: Getting off the Ground with the First Deep Learning Model 4. Chapter 3: Transfer Learning Using Pre-Trained Models 5. Chapter 4: Ready-to-Cook Models from Lightning Flash 6. Section 2: Solving using PyTorch Lightning
7. Chapter 5: Time Series Models 8. Chapter 6: Deep Generative Models 9. Chapter 7: Semi-Supervised Learning 10. Chapter 8: Self-Supervised Learning 11. Section 3: Advanced Topics
12. Chapter 9: Deploying and Scoring Models 13. Chapter 10: Scaling and Managing Training 14. Other Books You May Enjoy

Summary

We got a taste of basic MLPs and CNNs in this chapter, which are the building blocks of DL. We learned that by using the PyTorch Lightning framework, we can easily build our models. While MLPs and CNNs may sound like basic models, they are quite advanced in terms of business applications, and many companies are just warming up to their industrial use. Neural Networks are used very widely as classifiers on structured data for predicting users' likes or propensity to respond to an offer or for marketing campaign optimization, among many other things. CNNs are also widely used in many industrial applications, such as counting the number of objects in an image, recognizing car dents for insurance claims, facial recognition to identify criminals, and so on.

In this chapter, we saw how to build the simplest yet most important XOR operator using an MLP model. We further extended the concept of MLPs to build our first CNN DL model to recognize images. Using PyTorch Lightning...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime