Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Deep Learning for Genomics

You're reading from   Deep Learning for Genomics Data-driven approaches for genomics applications in life sciences and biotechnology

Arrow left icon
Product type Paperback
Published in Nov 2022
Publisher Packt
ISBN-13 9781804615447
Length 270 pages
Edition 1st Edition
Arrow right icon
Author (1):
Arrow left icon
Upendra Kumar Devisetty Upendra Kumar Devisetty
Author Profile Icon Upendra Kumar Devisetty
Upendra Kumar Devisetty
Arrow right icon
View More author details
Toc

Table of Contents (18) Chapters Close

Preface 1. Part 1 – Machine Learning in Genomics
2. Chapter 1: Introducing Machine Learning for Genomics FREE CHAPTER 3. Chapter 2: Genomics Data Analysis 4. Chapter 3: Machine Learning Methods for Genomic Applications 5. Part 2 – Deep Learning for Genomic Applications
6. Chapter 4: Deep Learning for Genomics 7. Chapter 5: Introducing Convolutional Neural Networks for Genomics 8. Chapter 6: Recurrent Neural Networks in Genomics 9. Chapter 7: Unsupervised Deep Learning with Autoencoders 10. Chapter 8: GANs for Improving Models in Genomics 11. Part 3 – Operationalizing models
12. Chapter 9: Building and Tuning Deep Learning Models 13. Chapter 10: Model Interpretability in Genomics 14. Chapter 11: Model Deployment and Monitoring 15. Chapter 12: Challenges, Pitfalls, and Best Practices for Deep Learning in Genomics 16. Index 17. Other Books You May Enjoy

Introducing Machine Learning for Genomics

Machine learning (ML) is the field of science that deals with developing computer algorithms and models that can perform certain tasks without explicitly programming them. This is to say, it teaches the machines to “learn” rather than specifying “rules” from input data provided to them. The machine then can convert that learning into expertise or knowledge and use that for predictions. ML is an important tool for leveraging technologies around artificial intelligence (AI), a subfield of computer science that aims to perform tasks automatically that we, as humans, are naturally good at. ML is an important aspect of all modern businesses and research. The adoption of ML for genomics applications is changing recently because of the availability of large genomic datasets, improvement in algorithms, and, most importantly, superior computational power. More and more scientific research organizations and industries are expanding the use of ML across vast volumes of genomic data for predictive diagnostics, as well as to get biological insights at the scale of population health.

Genomics, the study of the genetic constitution of organisms, holds promise in understanding and diagnosing human diseases or improving our agriculture and livestock. The field of genomics has seen exponential growth in the last 15 years, mainly due to recent technological advances in High-throughput sequencing also known as next-generation sequencing (NGS) technologies generating exponential amounts of genomics data. It is estimated that between 100 million and as many as 2 billion human genomes could be sequenced by 2025 (https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1002195), representing an astounding growth of four to five orders of magnitude in 10 years and far exceeding the growth of many big data domains. This complexity and the sheer amount of data generated create roadblocks not only to the acquisition, storage, and distribution but also to genomic data analysis. The current tools used in the genomic analysis are built on top of deterministic approaches and rely on rules encoded to perform a particular task. To keep up with data growth, we need more and new innovative approaches, such as ML, in genomics to enrich our understanding of basic biology and subject them to applied research. In this chapter, we’ll learn what ML is, why ML is essential for genomics, and what value ML brings to life sciences and biotechnology industries that leverage genome data for the development of genomic-based products. By the end of this chapter, you will understand the limitations of the current conventional algorithms for genomic data analysis, how solving problems with ML is different from conventional approaches, and how ML approaches can fill in those gaps and make generating biological insights very easy.

As such, in this chapter, we’re going to cover the following main topics:

  • What is machine learning?
  • Why machine learning for genomics?
  • Machine learning for genomics in life sciences and biotechnology
You have been reading a chapter from
Deep Learning for Genomics
Published in: Nov 2022
Publisher: Packt
ISBN-13: 9781804615447
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image