Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Computer Vision with OpenCV 3 and Qt5

You're reading from   Computer Vision with OpenCV 3 and Qt5 Build visually appealing, multithreaded, cross-platform computer vision applications

Arrow left icon
Product type Paperback
Published in Jan 2018
Publisher Packt
ISBN-13 9781788472395
Length 486 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Amin Ahmadi Tazehkandi Amin Ahmadi Tazehkandi
Author Profile Icon Amin Ahmadi Tazehkandi
Amin Ahmadi Tazehkandi
Arrow right icon
View More author details
Toc

Table of Contents (14) Chapters Close

Preface 1. Introduction to OpenCV and Qt FREE CHAPTER 2. Creating Our First Qt and OpenCV Project 3. Creating a Comprehensive Qt+OpenCV Project 4. Mat and QImage 5. The Graphics View Framework 6. Image Processing in OpenCV 7. Features and Descriptors 8. Multithreading 9. Video Analysis 10. Debugging and Testing 11. Linking and Deployment 12. Qt Quick Applications 13. Other Books You May Enjoy

Image filtering


In this starting section, you will learn about linear and non-linear image filtering methods available in OpenCV. It's important to note that all of the functions discussed in this section take a Mat image as an input and produce a Mat image of the same size and the same number of channels. In fact, the filters are applied to each channel independently. In general, filtering methods take a pixel and its pixels from the input image and calculate the value of the corresponding pixel in the resulting image based on a function response from those pixels.

This usually requires an assumption to be made about the pixels that do not exist, while calculating the filtered pixel result. OpenCV provides a number of methods to overcome this issue, and they can be specified in almost all of the OpenCV functions that need to deal with this phenomenon using the cv::BorderTypes enum. We will see how it is used in our first example in this chapter a bit later, but, before that, let's make...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image