Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Azure Data Scientist Associate Certification Guide

You're reading from   Azure Data Scientist Associate Certification Guide A hands-on guide to machine learning in Azure and passing the Microsoft Certified DP-100 exam

Arrow left icon
Product type Paperback
Published in Dec 2021
Publisher Packt
ISBN-13 9781800565005
Length 448 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Andreas Botsikas Andreas Botsikas
Author Profile Icon Andreas Botsikas
Andreas Botsikas
Michael Hlobil Michael Hlobil
Author Profile Icon Michael Hlobil
Michael Hlobil
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Section 1: Starting your cloud-based data science journey
2. Chapter 1: An Overview of Modern Data Science FREE CHAPTER 3. Chapter 2: Deploying Azure Machine Learning Workspace Resources 4. Chapter 3: Azure Machine Learning Studio Components 5. Chapter 4: Configuring the Workspace 6. Section 2: No code data science experimentation
7. Chapter 5: Letting the Machines Do the Model Training 8. Chapter 6: Visual Model Training and Publishing 9. Section 3: Advanced data science tooling and capabilities
10. Chapter 7: The AzureML Python SDK 11. Chapter 8: Experimenting with Python Code 12. Chapter 9: Optimizing the ML Model 13. Chapter 10: Understanding Model Results 14. Chapter 11: Working with Pipelines 15. Chapter 12: Operationalizing Models with Code 16. Other Books You May Enjoy

Summary

In this chapter, you learned how to configure an AutoML process to discover the best model that can predict whether a customer will churn or not. First, you used the AutoML wizard of the Azure Machine Learning Studio web experience to configure the experiment. Then, you monitored the execution of the run in the Experiments section of the studio interface. Once the training was completed, you reviewed the trained models and saw the information that had been stored regarding the best model. Then, you deployed that machine learning model in an Azure Container Instance and tested that the real-time endpoint performs the requested inferences. In the end, you deleted the deployment to avoid incurring costs in your Azure subscription.

In the next chapter, you will continue exploring the no-code/low code aspects of the Azure Machine Learning Studio experience by looking at the designer, which allows you to graphically design a training pipeline and operationalize the produced model...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime