Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Applied Unsupervised Learning with R

You're reading from   Applied Unsupervised Learning with R Uncover hidden relationships and patterns with k-means clustering, hierarchical clustering, and PCA

Arrow left icon
Product type Paperback
Published in Mar 2019
Publisher
ISBN-13 9781789956399
Length 320 pages
Edition 1st Edition
Languages
Arrow right icon
Authors (2):
Arrow left icon
Bradford Tuckfield Bradford Tuckfield
Author Profile Icon Bradford Tuckfield
Bradford Tuckfield
Alok Malik Alok Malik
Author Profile Icon Alok Malik
Alok Malik
Arrow right icon
View More author details
Toc

Introduction to the Iris Dataset


In this chapter, we're going to use the Iris flowers dataset in exercises to learn how to classify three species of Iris flowers (Versicolor, Setosa, and Virginica) without using labels. This dataset is built-in to R and is very good for learning about the implementation of clustering techniques.

Note that in our exercise dataset, we have final labels for the flowers. We're going to compare clustering results with those labels. We choose this dataset just to demonstrate that the results of clustering make sense. In the case of datasets such as the wholesale customer dataset (covered later in the book), where we don't have final labels, the results of clustering cannot be objectively verified and therefore might lead to misguided conclusions. That's the kind of use case where clustering is used in real life when we don't have final labels for the dataset. This point will be clearer once you have done both the exercises and activities.

Exercise 1: Exploring the Iris Dataset

In this exercise, we're going to learn how to use the Iris dataset in R. Assuming you already have R installed in your system, let's proceed:

  1. Load the Iris dataset into a variable as follows:

    iris_data<-iris
  2. Now that our Iris data is in the iris_data variable, we can have a look at its first few rows by using the head function in R:

    head(iris_data)

    The output is as follows:

    Figure 1.4: The first six rows of the Iris dataset

We can see our dataset has five columns. We're mostly going to use two columns for ease of visualization in plots of two dimensions.

Types of Clustering

As stated previously, clustering algorithms find natural groupings in data. There are many ways in which we can find natural groupings in data. The following are the methods that we're going to study in this chapter:

  • k-means clustering

  • k-medoids clustering

Once the concepts related to the basic types of clustering are clear, we will have a look at other types of clustering, which are as follows:

  • k-modes

  • Density-based clustering

  • Agglomerative hierarchical clustering

  • Divisive clustering

You have been reading a chapter from
Applied Unsupervised Learning with R
Published in: Mar 2019
Publisher:
ISBN-13: 9781789956399
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image