Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
15 Math Concepts Every Data Scientist Should Know

You're reading from   15 Math Concepts Every Data Scientist Should Know Understand and learn how to apply the math behind data science algorithms

Arrow left icon
Product type Paperback
Published in Aug 2024
Publisher Packt
ISBN-13 9781837634187
Length 510 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
David Hoyle David Hoyle
Author Profile Icon David Hoyle
David Hoyle
Arrow right icon
View More author details
Toc

Table of Contents (21) Chapters Close

Preface 1. Part 1: Essential Concepts
2. Chapter 1: Recap of Mathematical Notation and Terminology FREE CHAPTER 3. Chapter 2: Random Variables and Probability Distributions 4. Chapter 3: Matrices and Linear Algebra 5. Chapter 4: Loss Functions and Optimization 6. Chapter 5: Probabilistic Modeling 7. Part 2: Intermediate Concepts
8. Chapter 6: Time Series and Forecasting 9. Chapter 7: Hypothesis Testing 10. Chapter 8: Model Complexity 11. Chapter 9: Function Decomposition 12. Chapter 10: Network Analysis 13. Part 3: Selected Advanced Concepts
14. Chapter 11: Dynamical Systems 15. Chapter 12: Kernel Methods 16. Chapter 13: Information Theory 17. Chapter 14: Non-Parametric Bayesian Methods 18. Chapter 15: Random Matrices 19. Index 20. Other Books You May Enjoy

Summary

This chapter has focused on a single, but important, concept – loss functions. Loss functions are important because they help us measure how good our predictive models are and, more generally, how well one mathematical object approximates another. They are also important because we can minimize them with respect to our model parameters, and so we can use loss functions, or more specifically risk functions, to fit our models to training data. In this chapter, we have learned about the different aspects of risk functions and how to minimize them. Specifically, we have learned about the following:

  • What a loss function is and what it measures
  • That a risk function is the expectation value of a loss function
  • What the empirical risk function is and how it is calculated from training data
  • How least squares minimization is a form of empirical risk minimization and can be used to estimate optimal parameter values for a model
  • How OLS regression performs...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image