Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Using Stable Diffusion with Python

You're reading from   Using Stable Diffusion with Python Leverage Python to control and automate high-quality AI image generation using Stable Diffusion

Arrow left icon
Product type Paperback
Published in Jun 2024
Publisher Packt
ISBN-13 9781835086377
Length 352 pages
Edition 1st Edition
Languages
Concepts
Arrow right icon
Author (1):
Arrow left icon
Andrew Zhu (Shudong Zhu) Andrew Zhu (Shudong Zhu)
Author Profile Icon Andrew Zhu (Shudong Zhu)
Andrew Zhu (Shudong Zhu)
Arrow right icon
View More author details
Toc

Table of Contents (29) Chapters Close

Preface 1. Part 1 – A Whirlwind of Stable Diffusion FREE CHAPTER
2. Chapter 1: Introducing Stable Diffusion 3. Chapter 2: Setting Up the Environment for Stable Diffusion 4. Chapter 3: Generating Images Using Stable Diffusion 5. Chapter 4: Understanding the Theory Behind Diffusion Models 6. Chapter 5: Understanding How Stable Diffusion Works 7. Chapter 6: Using Stable Diffusion Models 8. Part 2 – Improving Diffusers with Custom Features
9. Chapter 7: Optimizing Performance and VRAM Usage 10. Chapter 8: Using Community-Shared LoRAs 11. Chapter 9: Using Textual Inversion 12. Chapter 10: Overcoming 77-Token Limitations and Enabling Prompt Weighting 13. Chapter 11: Image Restore and Super-Resolution 14. Chapter 12: Scheduled Prompt Parsing 15. Part 3 – Advanced Topics
16. Chapter 13: Generating Images with ControlNet 17. Chapter 14: Generating Video Using Stable Diffusion 18. Chapter 15: Generating Image Descriptions Using BLIP-2 and LLaVA 19. Chapter 16: Exploring Stable Diffusion XL 20. Chapter 17: Building Optimized Prompts for Stable Diffusion 21. Part 4 – Building Stable Diffusion into an Application
22. Chapter 18: Applications – Object Editing and Style Transferring 23. Chapter 19: Generation Data Persistence 24. Chapter 20: Creating Interactive User Interfaces 25. Chapter 21: Diffusion Model Transfer Learning 26. Chapter 22: Exploring Beyond Stable Diffusion 27. Index 28. Other Books You May Enjoy

Generating Image Descriptions Using BLIP-2 and LLaVA

Imagine you have an image in hand and need to upscale it or generate new images based on it, but you don’t have the prompt or description associated with it. You may say, “Fine, I can write up a new prompt for it.” For one image, that is acceptable, what if there are thousands or even millions of images without descriptions? It is impossible to write them all up manually.

Fortunately, we can use artificial intelligence (AI) to help us generate descriptions. There are many pretrained models that can achieve this goal, and the number is always increasing. In this chapter, I am going to introduce two AI solutions to generate the caption, description, or prompt for an image, all fully automated:

  • BLIP-2: Bootstrapping Language-Image Pre-training with Frozen Image Encoders and Large Language Models [1]
  • LLaVA: Large Language and Vision Assistant [3]

BLIP-2 [1] is fast and requires relatively low...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image