Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
TradeStation EasyLanguage for Algorithmic Trading

You're reading from   TradeStation EasyLanguage for Algorithmic Trading Discover real-world institutional applications of Equities, Futures, and Forex markets

Arrow left icon
Product type Paperback
Published in Sep 2024
Publisher Packt
ISBN-13 9781835881200
Length 282 pages
Edition 1st Edition
Arrow right icon
Author (1):
Arrow left icon
Domenico D'Errico Domenico D'Errico
Author Profile Icon Domenico D'Errico
Domenico D'Errico
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Chapter 1: Introduction to Algorithmic Trading and the TradeStation Platform FREE CHAPTER 2. Chapter 2: Getting Hands-On with EasyLanguage 3. Chapter 3: Writing a Trend Strategy 4. Chapter 4: Strategy Backtesting and Validation 5. Chapter 5: Reversal Strategies 6. Chapter 6: Trend Pullback Strategies 7. Chapter 7: Risk Management 8. Chapter 8: Futures and Forex Algorithmic Trading 9. Chapter 9: The Trading Operational Plan 10. Chapter 10: EasyLanguage in AI – Bridging Traditional Trading and Advanced Analytics 11. Chapter 11: EasyLanguage for Machine Learning 12. Index

A definition of machine learning for pattern recognition

Machine learning is a broad field within AI that focuses on developing algorithms that allow computers to learn from data and make decisions or predictions, without being explicitly programmed for specific tasks. The primary goal is to enable machines to improve their performance on a given task through experience.

Pattern recognition is a specific application area within the broader field of machine learning. It involves the process of identifying patterns and regularities in data. Pattern recognition is essentially about categorizing or classifying data based on learned patterns.

In my experience, I’ve found that there are numerous similarities between the logic behind machine learning for pattern recognition and those of the traditional technical trading approach.

Every time traders analyze a stock chart, they search, sometimes unconsciously, for a price configuration that they have seen before. If you listen...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image