Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
TinyML Cookbook

You're reading from   TinyML Cookbook Combine artificial intelligence and ultra-low-power embedded devices to make the world smarter

Arrow left icon
Product type Paperback
Published in Apr 2022
Publisher Packt
ISBN-13 9781801814973
Length 344 pages
Edition 1st Edition
Tools
Arrow right icon
Author (1):
Arrow left icon
Gian Marco Iodice Gian Marco Iodice
Author Profile Icon Gian Marco Iodice
Gian Marco Iodice
Arrow right icon
View More author details
Toc

Table of Contents (10) Chapters Close

Preface 1. Chapter 1: Getting Started with TinyML 2. Chapter 2: Prototyping with Microcontrollers FREE CHAPTER 3. Chapter 3: Building a Weather Station with TensorFlow Lite for Microcontrollers 4. Chapter 4: Voice Controlling LEDs with Edge Impulse 5. Chapter 5: Indoor Scene Classification with TensorFlow Lite for Microcontrollers and the Arduino Nano 6. Chapter 6: Building a Gesture-Based Interface for YouTube Playback 7. Chapter 7: Running a Tiny CIFAR-10 Model on a Virtual Platform with the Zephyr OS 8. Chapter 8: Toward the Next TinyML Generation with microNPU 9. Other Books You May Enjoy

Chapter 8: Toward the Next TinyML Generation with microNPU

Here, we are at the last stop of our journey into the world of TinyML. Although this chapter may look like the end, it is actually the beginning of something new and extraordinary for Machine Learning (ML) at the very edge. In our journey, we have learned how vital power consumption is for effective and long-lasting TinyML applications. However, computing capacity is the key to unlocking new use cases and making the "things" around us even more intelligent. For this reason, a new, advanced processor has been designed to extend the computational power and energy efficiency of ML workloads. This processor is the Micro-Neural Processing Unit (microNPU).

In this final chapter, we will discover how to run a quantized CIFAR-10 model on a virtual Arm Ethos-U55 microNPU.

We will start this chapter by learning how this processor works and installing the software dependencies to build and run the model on the Arm Corstone...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image