Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
The Statistics and Machine Learning with R Workshop

You're reading from   The Statistics and Machine Learning with R Workshop Unlock the power of efficient data science modeling with this hands-on guide

Arrow left icon
Product type Paperback
Published in Oct 2023
Publisher Packt
ISBN-13 9781803240305
Length 516 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Liu Peng Liu Peng
Author Profile Icon Liu Peng
Liu Peng
Arrow right icon
View More author details
Toc

Table of Contents (20) Chapters Close

Preface 1. Part 1:Statistics Essentials
2. Chapter 1: Getting Started with R FREE CHAPTER 3. Chapter 2: Data Processing with dplyr 4. Chapter 3: Intermediate Data Processing 5. Chapter 4: Data Visualization with ggplot2 6. Chapter 5: Exploratory Data Analysis 7. Chapter 6: Effective Reporting with R Markdown 8. Part 2:Fundamentals of Linear Algebra and Calculus in R
9. Chapter 7: Linear Algebra in R 10. Chapter 8: Intermediate Linear Algebra in R 11. Chapter 9: Calculus in R 12. Part 3:Fundamentals of Mathematical Statistics in R
13. Chapter 10: Probability Basics 14. Chapter 11: Statistical Estimation 15. Chapter 12: Linear Regression in R 16. Chapter 13: Logistic Regression in R 17. Chapter 14: Bayesian Statistics 18. Index 19. Other Books You May Enjoy

Diving deeper into Bayesian inference

Bayesian inference is a statistical method that makes use of conditional probability to update the prior beliefs about the parameters of a statistical model given the observed data. The output of Bayesian inference is a posterior distribution, which is a probability distribution that represents our updated beliefs about the parameter after observing the data.

When calculating the exact posterior distribution is difficult, we would often resort to MCMC, which is a technique for estimating the distribution of a random variable. It’s a method commonly used to generate samples from the posterior distribution in Bayesian inference, especially when the dimensionality of the model parameters is high, making an analytical solution intractable.

The following section introduces the normal-normal model and uses MCMC to estimate its posterior distribution.

Introducing the normal-normal model

The normal-normal model is another foundational...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime