Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Simulation for Data Science with R

You're reading from   Simulation for Data Science with R Effective Data-driven Decision Making

Arrow left icon
Product type Paperback
Published in Jun 2016
Publisher Packt
ISBN-13 9781785881169
Length 398 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Matthias Templ Matthias Templ
Author Profile Icon Matthias Templ
Matthias Templ
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Introduction FREE CHAPTER 2. R and High-Performance Computing 3. The Discrepancy between Pencil-Driven Theory and Data-Driven Computational Solutions 4. Simulation of Random Numbers 5. Monte Carlo Methods for Optimization Problems 6. Probability Theory Shown by Simulation 7. Resampling Methods 8. Applications of Resampling Methods and Monte Carlo Tests 9. The EM Algorithm 10. Simulation with Complex Data 11. System Dynamics and Agent-Based Models Index

Summary


In this chapter, the data scientist approach to probability was shown. Probability concepts was not presented as a mathematical exercise, but some of the most important theorems when working with samples have been shown by simulation: the law of large numbers and the central limit theorem.

The concept of convergence of a mean was shown by tossing a coin. To toss a coin is something very basic in statistics. Think on selecting a person from a sampling frame or not. The Binomial but also the Poisson distribution can be motivated from this. The binomial distribution was shown in this chapter.

Both concepts—the law of large numbers as well as the central limit theorem, lead to confidence intervals, that are—in classical statistics—just a definition. This concept works as soon as the central limit theorem holds.

Also in content of this chapter were the properties of estimators. Bias, unbiasedness, asymptotic unbiasedness, and so on, have been introduced. These wordings will be consequently...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image