Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Serverless ETL and Analytics with AWS Glue

You're reading from   Serverless ETL and Analytics with AWS Glue Your comprehensive reference guide to learning about AWS Glue and its features

Arrow left icon
Product type Paperback
Published in Aug 2022
Publisher Packt
ISBN-13 9781800564985
Length 434 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (6):
Arrow left icon
Vishal Pathak Vishal Pathak
Author Profile Icon Vishal Pathak
Vishal Pathak
Ishan Gaur Ishan Gaur
Author Profile Icon Ishan Gaur
Ishan Gaur
Tomohiro Tanaka Tomohiro Tanaka
Author Profile Icon Tomohiro Tanaka
Tomohiro Tanaka
Albert Quiroga Albert Quiroga
Author Profile Icon Albert Quiroga
Albert Quiroga
Subramanya Vajiraya Subramanya Vajiraya
Author Profile Icon Subramanya Vajiraya
Subramanya Vajiraya
Noritaka Sekiyama Noritaka Sekiyama
Author Profile Icon Noritaka Sekiyama
Noritaka Sekiyama
+2 more Show less
Arrow right icon
View More author details
Toc

Table of Contents (20) Chapters Close

Preface 1. Section 1 – Introduction, Concepts, and the Basics of AWS Glue
2. Chapter 1: Data Management – Introduction and Concepts FREE CHAPTER 3. Chapter 2: Introduction to Important AWS Glue Features 4. Chapter 3: Data Ingestion 5. Section 2 – Data Preparation, Management, and Security
6. Chapter 4: Data Preparation 7. Chapter 5: Data Layouts 8. Chapter 6: Data Management 9. Chapter 7: Metadata Management 10. Chapter 8: Data Security 11. Chapter 9: Data Sharing 12. Chapter 10: Data Pipeline Management 13. Section 3 – Tuning, Monitoring, Data Lake Common Scenarios, and Interesting Edge Cases
14. Chapter 11: Monitoring 15. Chapter 12: Tuning, Debugging, and Troubleshooting 16. Chapter 13: Data Analysis 17. Chapter 14: Machine Learning Integration 18. Chapter 15: Architecting Data Lakes for Real-World Scenarios and Edge Cases 19. Other Books You May Enjoy

Securing data content

In the context of a data lake, security is a “job zero” priority. In Chapter 8, Data Security, we will dive deep into security. In this section, we cover basic ETL operations that secure data. The following common techniques can be used to hide confidential values from data:

  • Masking values
  • Hashing values

In this section, you will learn how to mask/hash values that are included in your data.

Masking values

In business data lakes, the data can contain sensitive data, such as people’s names, phone numbers, credit card numbers, and so on. Data security is an important aspect of data lakes. There are different approaches to handling such data securely. It is a good idea to just drop the sensitive data when you collect the data from data sources when you won’t use the sensitive data in analytics. It is also common to manage access permissions on certain columns or records of the data. Another approach is to mask the...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime