Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
R Bioinformatics Cookbook

You're reading from   R Bioinformatics Cookbook Use R and Bioconductor to perform RNAseq, genomics, data visualization, and bioinformatic analysis

Arrow left icon
Product type Paperback
Published in Oct 2019
Publisher Packt
ISBN-13 9781789950694
Length 316 pages
Edition 1st Edition
Languages
Tools
Arrow right icon
Authors (2):
Arrow left icon
Dr Dan Maclean Dr Dan Maclean
Author Profile Icon Dr Dan Maclean
Dr Dan Maclean
Dan MacLean Dan MacLean
Author Profile Icon Dan MacLean
Dan MacLean
Arrow right icon
View More author details
Toc

Table of Contents (13) Chapters Close

Preface 1. Performing Quantitative RNAseq FREE CHAPTER 2. Finding Genetic Variants with HTS Data 3. Searching Genes and Proteins for Domains and Motifs 4. Phylogenetic Analysis and Visualization 5. Metagenomics 6. Proteomics from Spectrum to Annotation 7. Producing Publication and Web-Ready Visualizations 8. Working with Databases and Remote Data Sources 9. Useful Statistical and Machine Learning Methods 10. Programming with Tidyverse and Bioconductor 11. Building Objects and Packages for Code Reuse 12. Other Books You May Enjoy

Developing reusable workflows and reports

A very common task in bioinformatics is writing up our results in order to communicate them to a colleague or just to have a good record in our laboratory books (electronic or otherwise). A key skill is to make the work as reproducible as possible so that we can rerun it ourselves when we need to revisit it or someone else interested in what we did can replicate the process. One increasingly popular solution to this problem is to use literate programming techniques and executable notebooks that are a mixture of human-readable text, analytical code, and computational output rolled into a single document. In R, the rmarkdown package allows us to combine code and text in this way and create output documents in a variety of formats.

In this recipe, we'll look at the large-scale structure of one such document that can be compiled with...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image