Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Python for Finance Cookbook – Second Edition

You're reading from   Python for Finance Cookbook – Second Edition Over 80 powerful recipes for effective financial data analysis

Arrow left icon
Product type Paperback
Published in Dec 2022
Publisher Packt
ISBN-13 9781803243191
Length 740 pages
Edition 2nd Edition
Languages
Tools
Arrow right icon
Author (1):
Arrow left icon
Eryk Lewinson Eryk Lewinson
Author Profile Icon Eryk Lewinson
Eryk Lewinson
Arrow right icon
View More author details
Toc

Table of Contents (18) Chapters Close

Preface 1. Acquiring Financial Data FREE CHAPTER 2. Data Preprocessing 3. Visualizing Financial Time Series 4. Exploring Financial Time Series Data 5. Technical Analysis and Building Interactive Dashboards 6. Time Series Analysis and Forecasting 7. Machine Learning-Based Approaches to Time Series Forecasting 8. Multi-Factor Models 9. Modeling Volatility with GARCH Class Models 10. Monte Carlo Simulations in Finance 11. Asset Allocation 12. Backtesting Trading Strategies 13. Applied Machine Learning: Identifying Credit Default 14. Advanced Concepts for Machine Learning Projects 15. Deep Learning in Finance 16. Other Books You May Enjoy
17. Index

Simulating stock price dynamics using a geometric Brownian motion

Simulating stock prices plays a crucial role in the valuation of many derivatives, most notably options. Due to the randomness in the price movement, these simulations rely on stochastic differential equations (SDEs). A stochastic process is said to follow a geometric Brownian motion (GBM) when it satisfies the following SDE:

Here, we have the following:

  • St—Stock price
  • —The drift coefficient, that is, the average return over a given period or the instantaneous expected return
  • —The diffusion coefficient, that is, how much volatility is in the drift
  • Wt —The Brownian motion
  • d—This symbolizes the change in the variable over the considered time increment, while dt is the change in time

We will not investigate the properties of the Brownian motion in too much depth, as it is outside the scope of this book. Suffice to say, Brownian increments...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime