Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
Python Data Analysis, Second Edition

You're reading from   Python Data Analysis, Second Edition Data manipulation and complex data analysis with Python

Arrow left icon
Product type Paperback
Published in Mar 2017
Publisher Packt
ISBN-13 9781787127487
Length 330 pages
Edition 2nd Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Ivan Idris Ivan Idris
Author Profile Icon Ivan Idris
Ivan Idris
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. Getting Started with Python Libraries FREE CHAPTER 2. NumPy Arrays 3. The Pandas Primer 4. Statistics and Linear Algebra 5. Retrieving, Processing, and Storing Data 6. Data Visualization 7. Signal Processing and Time Series 8. Working with Databases 9. Analyzing Textual Data and Social Media 10. Predictive Analytics and Machine Learning 11. Environments Outside the Python Ecosystem and Cloud Computing 12. Performance Tuning, Profiling, and Concurrency A. Key Concepts
B. Useful Functions C. Online Resources

The bag-of-words model


In the bag-of-words model, we create from a document a bag containing words found in the document. In this model, we don't care about the word order. For each word in the document, we count the number of occurrences. With these word counts, we can do statistical analysis, for instance, to identify spam in e-mail messages.

If we have a group of documents, we can view each unique word in the corpus as a feature; here, feature means parameter or variable. Using all the word counts, we can build a feature vector for each document; vector is used here in the mathematical sense. If a word is present in the corpus but not in the document, the value of this feature will be 0. Surprisingly, NLTK doesn't currently have a handy utility to create a feature vector. However, the machine learning Python library, scikit-learn, does have a CountVectorizer class that we can use. In the next chapter, Chapter 10, Predictive Analytics and Machine Learning, we will do more with scikit-learn...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image