Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Machine Learning Algorithms

You're reading from   Machine Learning Algorithms A reference guide to popular algorithms for data science and machine learning

Arrow left icon
Product type Paperback
Published in Jul 2017
Publisher Packt
ISBN-13 9781785889622
Length 360 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Giuseppe Bonaccorso Giuseppe Bonaccorso
Author Profile Icon Giuseppe Bonaccorso
Giuseppe Bonaccorso
Arrow right icon
View More author details
Toc

Table of Contents (16) Chapters Close

Preface 1. A Gentle Introduction to Machine Learning FREE CHAPTER 2. Important Elements in Machine Learning 3. Feature Selection and Feature Engineering 4. Linear Regression 5. Logistic Regression 6. Naive Bayes 7. Support Vector Machines 8. Decision Trees and Ensemble Learning 9. Clustering Fundamentals 10. Hierarchical Clustering 11. Introduction to Recommendation Systems 12. Introduction to Natural Language Processing 13. Topic Modeling and Sentiment Analysis in NLP 14. A Brief Introduction to Deep Learning and TensorFlow 15. Creating a Machine Learning Architecture

Bayes' theorem


Let's consider two probabilistic events A and B. We can correlate the marginal probabilities P(A) and P(B) with the conditional probabilities P(A|B) and P(B|A) using the product rule:

Considering that the intersection is commutative, the first members are equal; so we can derive Bayes' theorem:

This formula has very deep philosophical implications and it's a fundamental element of statistical learning. First of all, let's consider the marginal probability P(A); this is normally a value that determines how probable a target event is, such as P(Spam) or P(Rain). As there are no other elements, this kind of probability is called Apriori, because it's often determined by mathematical considerations or simply by a frequency count. For example, imagine we want to implement a very simple spam filter and we've collected 100 emails. We know that 30 are spam and 70 are regular. So we can say that P(Spam) = 0.3.

However, we'd like to evaluate using some criteria (for simplicity, let's consider...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime
Banner background image