Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases now! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Learning Geospatial Analysis with Python-Second Edition
Learning Geospatial Analysis with Python-Second Edition

Learning Geospatial Analysis with Python-Second Edition: An effective guide to geographic information systems and remote sensing analysis using Python 3

eBook
€22.99 €32.99
Paperback
€41.99
Subscription
Free Trial
Renews at €18.99p/m

What do you get with a Packt Subscription?

Free for first 7 days. $19.99 p/m after that. Cancel any time!
Product feature icon Unlimited ad-free access to the largest independent learning library in tech. Access this title and thousands more!
Product feature icon 50+ new titles added per month, including many first-to-market concepts and exclusive early access to books as they are being written.
Product feature icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Product feature icon Thousands of reference materials covering every tech concept you need to stay up to date.
Subscribe now
View plans & pricing
Table of content icon View table of contents Preview book icon Preview Book

Learning Geospatial Analysis with Python-Second Edition

Chapter 1. Learning Geospatial Analysis with Python

This chapter is an overview of geospatial analysis. We will see how geospatial technology is currently impacting our world with a case study of one of the worst disease epidemics that the world has ever seen and how geospatial analysis helped stop the deadly virus in its tracks. Next, we'll step through the history of geospatial analysis, which predates computers and even paper maps! Then, we'll examine why you might want to learn a programming language as a geospatial analyst as opposed to just using geographic information system (GIS) applications. We'll realize the importance of making geospatial analysis as accessible as possible to the broadest number of people. Then, we'll step through basic GIS and remote sensing concepts and terminology that will stay with you through the rest of the book. Finally, we'll use Python for geospatial analysis right in the first chapter by building the simplest possible GIS from scratch!

This book assumes some basic knowledge of Python, IT literacy, and at least an awareness of geospatial analysis. This chapter provides a foundation in geospatial analysis, which is needed to attack any subject in the areas of remote sensing and GIS, including the material in all the other chapters of the book.

Geospatial analysis and our world

On March 25, 2014, the world awoke to news from the United Nations World Health Organization (WHO) announcing the early stages of a deadly virus outbreak in West Africa. The fast-moving Ebola virus would spread rapidly over the coming summer months resulting in cases in six countries on three continents, including the United States and Europe.

Government and humanitarian agencies faced a vicious race against time to contain the outbreak. Patients without treatment died in as little as six days after symptoms appeared. The most critical piece of information was the location of new cases relative to the existing cases. The challenge they faced required reporting these new cases in mostly rural areas with limited infrastructure. Knowing where the virus existed in humans provided the foundation for all of the decisions that response agencies needed for containment. The location of cases defined the extent of the outbreak. It allowed governments to prioritize the distribution of containment resources and medical supplies. It allowed them to trace the disease to the first victim. It ultimately allowed them to see if they were making progress in slowing the disease.

This map is a relative heat map of the affected countries based on the number of cases documented and their location:

Geospatial analysis and our world

Unfortunately, the rural conditions and limited number of response personnel at the beginning of the outbreak resulted in a five-day reporting cycle to the Liberian Ministry of Health who initially tracked the virus. Authorities needed better information to bring the outbreak under control as new cases grew exponentially.

The solution came from a Liberian student using open source software from a non-profit Kenyan technology start-up called Ushahidi. Ushahidi is the Swahili word for testimony or witness. A team of developers in Kenya originally developed the system in 2008 to track reports of violence after the disputed presidential election there. Kpetermeni Siakor set up the system in Liberia in 2011 following a similarly controversial election. When the epidemic hit Liberia, Siakor turned Ushahidi into a disease-monitoring platform.

Siakor created a dispatch team of volunteers who received phone calls from the public reporting possible Ebola cases. The details were entered into the Ushahidi database, which was available on a web-based map almost instantly. The Liberian Ministry of Health and other humanitarian organizations could access the website, track the spread of the disease, and properly distribute supplies at health centers. This effort, amplified by the international response, would ultimately contain the epidemic globally. In 2015, cases are receding as the world monitors West African cases in anticipation of the last patient recovering. The following screenshot shows the latest Liberian public Ushahidi map as of April, 2015:

Geospatial analysis and our world

Relief workers also used the Ushahidi disaster mapping system to respond to the 2010 Haiti earthquake. Maps have always been used in disaster relief; however, the modern evolution of GPS-enabled mobile phones, web technology, and open source geospatial software have created a revolution in humanitarian efforts globally.

Note

The Ushahidi API has a Python library that you can find at https://github.com/ushahidi/ushapy.

Beyond disasters

The application of geospatial modeling to disaster relief is one of the most recent and visible case studies. However, the use of geospatial analysis has been increasing steadily over the last 15 years. In 2004, the U.S. Department of Labor declared the geospatial industry as one of 13 high-growth industries in the United States expected to create millions of jobs in the coming decades.

Geospatial analysis can be found in almost every industry, including real estate, oil and gas, agriculture, defense, politics, health, transportation, and oceanography, to name a few. For a good overview of how geospatial analysis is used in dozens of different industries, visit http://geospatialrevolution.psu.edu.

History of geospatial analysis

Geospatial analysis can be traced as far back as 15,000 years ago to the Lascaux cave in southwestern France. In this cave, Paleolithic artists painted commonly hunted animals and what many experts believe are astronomical star maps for either religious ceremonies or potentially even migration patterns of prey. Though crude, these paintings demonstrate an ancient example of humans creating abstract models of the world around them and correlating spatial-temporal features to find relationships. The following image shows one of the paintings with an overlay illustrating the star maps:

History of geospatial analysis

Over the centuries, the art of cartography and science of land surveying has developed, but it wasn't until the 1800s that significant advances in geographic analysis emerged. Deadly cholera outbreaks in Europe between 1830 and 1860 led geographers in Paris and London to use geographic analysis for epidemiological studies.

In 1832, Charles Picquet used different half-toned shades of gray to represent deaths per thousand citizens in the 48 districts of Paris as part of a report on the cholera outbreak. In 1854, Dr. John Snow expanded on this method by tracking a cholera outbreak in London as it occurred. By placing a point on a map of the city each time a fatality was diagnosed, he was able to analyze the clustering of cholera cases. Snow traced the disease to a single water pump and prevented further cases. The map has three layers with streets, an X for each pump, and dots for each cholera death:

History of geospatial analysis

Geospatial analysis wasn't just used for the war on diseases. For centuries, generals and historians have used maps to understand human warfare. A retired French engineer named Charles Minard produced some of the most sophisticated infographics ever drawn between 1850 and 1870. The term infographics is too generic to describe these drawings because they have strong geographic components. The quality and detail of these maps make them fantastic examples of geographic information analysis even by today's standards. Minard released his masterpiece, Carte figurative des pertes successives en hommes de l'Armée Française dans la campagne de Russie 1812-1813, in 1869, which depicted the decimation of Napoleon's army in the Russian campaign of 1812. The map shows the size and location of the army over time along with prevailing weather conditions. The following graphic contains four different series of information on a single theme. It is a fantastic example of geographic analysis using pen and paper. The size of the army is represented by the widths of the brown and black swaths at a ratio of one millimeter for every 10,000 men. The numbers are also written along the swaths. The brown-colored path shows soldiers who entered Russia, while the black represents the ones who made it out. The map scale is shown to the right in the center as one French league (2.75 miles or 4.4 kilometers). The chart at the bottom runs from right to left and depicts the brutal freezing temperatures experienced by the soldiers on the return march home from Russia:

History of geospatial analysis

While far more mundane than a war campaign, Minard released another compelling map cataloguing the number of cattle sent to Paris from around France. Minard used pie charts of varying sizes in the regions of France to show each area's variety and volume of cattle that was shipped:

History of geospatial analysis

In the early 1900s, mass printing drove the development of the concept of map layers—a key feature of geospatial analysis. Cartographers drew different map elements (vegetation, roads, and elevation contours) on plates of glass that could then be stacked and photographed to be printed as a single image. If the cartographer made a mistake, only one plate of glass had to be changed instead of the entire map. Later, the development of plastic sheets made it even easier to create, edit, and store maps in this manner. However, the layering concept for maps as a benefit to analysis would not come into play until the modern computer age.

Geographic information systems

Computer mapping evolved with the computer itself in the 1960s. However, the origin of the term GIS began with the Canadian Department of Forestry and Rural Development. Dr. Roger Tomlinson headed a team of 40 developers in an agreement with IBM to build the Canada Geographic Information System (CGIS). The CGIS tracked the natural resources of Canada and allowed the profiling of these features for further analysis. The CGIS stored each type of land cover as a different layer. It also stored data in a Canadian-specific coordinate system suitable for the entire country that was devised for optimal area calculations. While the technology used was primitive by today's standards, the system had phenomenal capability at that time. The CGIS included software features that seem quite modern: map projection switching, rubber sheeting of scanned images, map scale change, line smoothing and generalization to reduce the number of points in a feature, automatic gap closing for polygons, area measurement, dissolving and merging of polygons, geometric buffering, creation of new polygons, scanning, and digitizing of new features from the reference data.

Note

The National Film Board of Canada produced a documentary in 1967 on the CGIS, which can be seen at the following URL:

http://video.esri.com/watch/128/data-for-decision_comma_-1967-short-version

Tomlinson is often called the father of GIS. After launching the CGIS, he earned his doctorate from the University of London with his 1974 dissertation, entitled The application of electronic computing methods and techniques to the storage, compilation, and assessment of mapped data, which describes GIS and geospatial analysis. Tomlinson now runs his own global consulting firm, Tomlinson Associates Ltd., and remains an active participant in the industry. He is often found delivering the keynote addresses at geospatial conferences.

CGIS is the starting point of geospatial analysis as defined by this book. However, this book would not have been written if not for the work of Howard Fisher and the Harvard Laboratory for Computer Graphics and Spatial Analysis at the Harvard Graduate School of Design. His work on the SYMAP GIS software that outputs maps to a line printer, started an era of development at the laboratory, which produced two other important packages and, as a whole, permanently defined the geospatial industry. SYMAP led to other packages including GRID and the Odyssey project from the same lab. GRID was a raster-based GIS system that used cells to represent geographic features instead of geometry. GRID was written by Carl Steinitz and David Sinton. The system later became IMGRID. Next came Odyssey. Odyssey was a team effort led by Nick Chrisman and Denis White. It was a system of programs that included many advanced geospatial data management features that are typical of modern geodatabase systems. Harvard attempted to commercialize these packages with limited success. However, their impact is still seen today. Virtually, every existing commercial and open source package owes something to these code bases.

Note

Howard Fisher produced a 1967 film using the output from SYMAP to show the urban expansion of Lansing, Michigan, from 1850 to 1965 by hand coding decades of property information into the system. The analysis took months but would take only a few minutes to create now using modern tools and data. You can see the film at http://youtu.be/xj8DQ7IQ8_o.

There are now dozens of graphical user interface (GUI) geospatial desktop applications available today from companies including Esri, ERDAS, Intergraph, and ENVI, to name a few. Esri is the oldest, continuously operating GIS software company, which started in the late 1960s. In the open source realm, packages including Quantum GIS (QGIS) and Geographic Resources Analysis Support System (GRASS) are widely used. Beyond comprehensive desktop software packages, software libraries for the building of new software exist in the thousands.

Remote sensing

Remote sensing is the collection of information about an object without making physical contact with that object. In the context of geospatial analysis, the object is usually the Earth. Remote sensing also includes the processing of the collected information. The potential of geographic information systems is limited only by the available geographic data. The cost of land surveying, even using a modern GPS, to populate a GIS has always been resource-intensive. The advent of remote sensing not only dramatically reduced this cost of geospatial analysis, but it took the field in entirely new directions. In addition to powerful reference data for GIS systems, remote sensing has made possible the automated and semi-automated generation of GIS data by extracting features from images and geographic data. The eccentric French photographer, Gaspard-Félix Tournachon, also known as Nadar, took the first aerial photograph in 1858 from a hot-air balloon over Paris:

Remote sensing

The value of a true bird's-eye view of the world was immediately apparent. As early as 1920, books on aerial photo interpretation began to appear.

When the United States entered the Cold War with the Soviet Union after World War II, aerial photography to monitor military capability became prolific with the invention of the American U-2 spy plane. The U-2 spy plane could fly at 70,000 feet, putting it out of the range of existing anti-aircraft weapons designed to reach only 50,000 feet. The American U-2 flights over Russia ended when the Soviets finally shot down a U-2 and captured the pilot.

However, aerial photography had little impact on modern geospatial analysis. Planes could only capture small footprints of an area. Photographs were tacked to walls or examined on light tables but not in the context of other information. Though extremely useful, aerial photo interpretation was simply another visual perspective.

The game changer came on October 4, 1957, when the Soviet Union launched the Sputnik 1 satellite. The Soviets had scrapped a much more complex and sophisticated satellite prototype because of manufacturing difficulties. Once corrected, this prototype would later become Sputnik 3. Instead, they opted for a simple metal sphere with four antennae and a simple radio transmitter. Other countries including the United States were also working on satellites. The satellite initiatives were not entirely a secret. They were driven by scientific motives as part of the International Geophysical Year (IGY). Advancement in rocket technology made artificial satellites a natural evolution for Earth science. However, in nearly every case, each country's defense agency was also heavily involved. Similar to the Soviets, other countries were struggling with complex satellite designs packed with scientific instruments. The Soviets' decision to switch to the simplest possible device for the sole reason of launching a satellite before the Americans was effective. Sputnik was visible in the sky as it passed over and its radio pulse could be heard by amateur radio operators. Despite Sputnik's simplicity, it provided valuable scientific information that could be derived from its orbital mechanics and radio frequency physics.

The Sputnik program's biggest impact was on the American space program. America's chief adversary had gained a tremendous advantage in the race to space. The United States ultimately responded with the Apollo moon landings. However, before this, the U.S. launched a program that would remain a national secret until 1995. The classified CORONA program resulted in the first pictures from space. The U.S. and Soviet Union had signed an agreement to end spy plane flights but satellites were conspicuously absent from the negotiations. The following map shows the CORONA process. Dashed lines are the satellite flight paths, the longer white tubes are the satellites, the smaller white cones are the film canisters, and the black blobs are the control stations that triggered the ejection of the film so that a plane could catch it in the sky:

Remote sensing

The first CORONA satellite was a four-year effort with many setbacks. However, the program ultimately succeeded. The difficulty of satellite imaging, even today, is retrieving the images from space. The CORONA satellites used canisters of black and white film that were ejected from the vehicle once exposed. As the film canister parachuted to Earth, a U.S. military plane would catch the package in midair. If the plane missed the canister, it would float for a brief duration in the water before sinking into the ocean to protect the sensitive information. The U.S. continued to develop the CORONA satellites until they matched the resolution and photographic quality of the U-2 spy plane photos. The primary disadvantages of the CORONA instruments were reusability and timeliness. Once out of film, a satellite could no longer be of service. Additionally, the film recovery was on a set schedule making the system unsuitable to monitor real-time situations. The overall success of the CORONA program, however, paved the way for the next wave of satellites, which ushered in the modern era of remote sensing.

Due to the CORONA program's secret status, its impact on remote sensing was indirect. Photographs of the Earth taken on manned U.S. space missions inspired the idea of a civilian-operated remote sensing satellite. The benefits of such a satellite were clear but the idea was still controversial. Government officials questioned whether a satellite was as cost-efficient as aerial photography. The military were worried that the public satellite could endanger the secrecy of the CORONA program. Other officials worried about the political consequences of imaging other countries without permission. However, the Department of the Interior (DOI) finally won permission for NASA to create a satellite to monitor Earth's surface resources.

On July 23, 1972, NASA launched the Earth Resources Technology Satellite (ERTS). The ERTS was quickly renamed to Landsat-1. The platform contained two sensors. The first was the Return Beam Vidicon (RBV) sensor, which was essentially a video camera. It was built by the radio and television giant, Radio Corporation of America (RCA). The RBV immediately had problems, which included disabling the satellite's altitude guidance system. The second attempt at a satellite was the highly experimental Multispectral Scanner (MSS). The MSS performed flawlessly and produced superior results than the RBV. The MSS captured four separate images at four different wavelengths of the light reflected from the Earth's surface.

This sensor had several revolutionary capabilities. The first and most important capability was the first global imaging of the planet scanning every spot on the Earth every 16 days. The following image from the U.S. National Aeronautics and Space Administration (NASA) illustrates this flight and collection pattern that is a series of overlapping swaths as the sensor orbits the Earth capturing tiles of data each time the sensor images a location on the Earth:

Remote sensing

It also recorded light beyond the visible spectrum. While it did capture green and red light visible to the human eye, it also scanned near-infrared light at two different wavelengths not visible to the human eye. The images were stored and transmitted digitally to three different ground stations in Maryland, California, and Alaska. The multispectral capability and digital format meant that the aerial view provided by Landsat wasn't just another photograph from the sky. It was beaming down data. This data could be processed by computers to output derivative information about the Earth in the same way a GIS provided derivative information about the Earth by analyzing one geographic feature in the context of another. NASA promoted the use of Landsat worldwide and made the data available at very affordable prices to anyone who asked.

This global imaging capability led to many scientific breakthroughs including the discovery of previously unknown geography as late as 1976. For example, using Landsat imagery, the Government of Canada located a tiny uncharted island inhabited by polar bears. They named the new landmass Landsat Island.

Landsat 1 was followed by six other missions and turned over to the National Oceanic and Atmospheric Administration (NOAA) as the responsible agency. Landsat 6 failed to achieve orbit due to a ruptured manifold, which disabled its maneuvering engines. During some of these missions, the satellites were managed by the Earth Observation Satellite (EOSAT) company, now called Space Imaging, but returned to government management by the Landsat 7 mission. The following image from NASA is a sample of a Landsat 7 product:

Remote sensing

The Landsat Data Continuity Mission (LDCM) was launched on February 13, 2013, and began collecting images on April 27, 2013, as part of its calibration cycle to become Landsat 8. The LDCM is a joint mission between NASA and the U. S. Geological Survey (USGS).

Elevation data

A Digital Elevation Model (DEM) is a three-dimensional representation of a planet's terrain. In the context of this book, this planet is the Earth. The history of digital elevation models is far less complicated than remotely-sensed imagery but no less significant. Before computers, representations of elevation data were limited to topographic maps created through traditional land surveys. Technology existed to create three-dimensional models from stereoscopic images or physical models from materials such as clay or wood, but these approaches were not widely used for geography.

The concept of digital elevation models began in 1986 when the French space agency, Centre national d'études spatiales (CNES), launched its SPOT-1 satellite, which included a stereoscopic radar. This system created the first usable DEM. Several other U.S. and European satellites followed this model with similar missions. In February, 2000, the Space Shuttle Endeavour conducted the Shuttle Radar Topography Mission (SRTM), which collected elevation data over 80% of the Earth's surface using a special radar antenna configuration that allowed a single pass. This model was surpassed in 2009 by the joint U.S. and Japanese mission using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) sensor aboard NASA's Terra satellite. This system captured 99% of the Earth's surface but has proven to have minor data issues. As the Space Shuttle's orbit did not cross the Earth's poles, it did not capture the entire surface. SRTM remains the gold standard. The following image from the USGS shows a colorized DEM known as a hillshade. Greener areas are lower elevations while yellow and brown areas are mid-range to high elevations:

Elevation data

Recently, more ambitious attempts at a worldwide elevation dataset are underway in the form of TerraSAR-X and TanDEM-X satellites launched by Germany in 2007 and 2010, respectively. These two radar elevation satellites worked together to produce a global DEM called WorldDEM that was released on April 15, 2014. This dataset has a relative accuracy of two meters and an absolute accuracy of four meters.

Computer-aided drafting

Computer-aided drafting (CAD) is worth mentioning, though it does not directly relate to geospatial analysis. The history of CAD system development parallels and intertwines with the history of geospatial analysis. CAD is an engineering tool used to model two- and three-dimensional objects usually for engineering and manufacturing. The primary difference between a geospatial model and CAD model is that a geospatial model is referenced to the Earth, whereas a CAD model can possibly exist in abstract space. For example, a three-dimensional blueprint of a building in a CAD system would not have a latitude or longitude, but in a GIS, the same building model would have a location on the Earth. However, over the years, CAD systems have taken on many features of GIS systems and are commonly used for smaller GIS projects. Likewise, many GIS programs can import CAD data that has been georeferenced. Traditionally, CAD tools were designed primarily for the engineering of data that was not geospatial.

However, engineers who became involved with geospatial engineering projects, such as designing a city utility electric system, would use the CAD tools that they were familiar with in order to create maps. Over time, both the GIS software evolved to import the geospatial-oriented CAD data produced by engineers, and CAD tools evolved to support geospatial data creation and better compatibility with GIS software. AutoCAD by Autodesk and ArcGIS by Esri were the leading commercial packages to develop this capability and the Geospatial Data Abstraction Library (GDAL) OGR library developers added CAD support as well.

Geospatial analysis and computer programming

Modern geospatial analysis can be conducted with the click of a button in any of the easy-to-use commercial or open source geospatial packages. So then, why would you want to use a programming language to learn this field? The most important reasons are as follows:

  • You want complete control of the underlying algorithms, data, and execution
  • You want to automate specific, repetitive analysis tasks with minimal overhead from a large, multipurpose geospatial framework
  • You want to create a program that's easy to share
  • You want to learn geospatial analysis beyond pushing buttons in software

The geospatial industry is gradually moving away from the traditional workflow in which teams of analysts use expensive desktop software to produce geospatial products. Geospatial analysis is being pushed towards automated processes that reside in the cloud. End user software is moving towards task-specific tools, many of which are accessed from mobile devices. Knowledge of geospatial concepts and data as well as the ability to build custom geospatial processes is where the geospatial work in the near future lies.

Object-oriented programming for geospatial analysis

Object-oriented programming is a software development paradigm in which concepts are modeled as objects that have properties and behaviors represented as attributes and methods, respectively. The goal of this paradigm is more modular software in which one object can inherit from one or more other objects to encourage software reuse.

The Python programming language is known for its ability to serve multiple roles as a well-designed, object-oriented language, a procedural scripting language, or even a functional programming language. However, you never completely abandon object-oriented programming in Python because even its native data types are objects and all Python libraries, known as modules, adhere to a basic object structure and behavior.

Geospatial analysis is the perfect activity for object-oriented programming. In most object-oriented programming projects, the objects are abstract concepts such as database connections that have no real-world analogy. However, in geospatial analysis, the concepts modeled are, well, real-world objects! The domain of geospatial analysis is the Earth and everything on it. Trees, buildings, rivers, and people are all examples of objects within a geospatial system.

A common example in literature for newcomers to object-oriented programming is the concrete analogy of a cat. Books on object-oriented programming frequently use some form of the following example.

Imagine that you are looking at a cat. We know some information about the cat, such as its name, age, color, and size. These features are the properties of the cat. The cat also exhibits behaviors such as eating, sleeping, jumping, and purring. In object-oriented programming, objects have properties and behaviors too. You can model a real-world object such as the cat in our example or something more abstract such as a bank account.

Most concepts in object-oriented programming are far more abstract than the simple cat paradigm or even the bank account. However, in geospatial analysis, the objects that are modeled remain concrete, such as the simple cat analogy, and in many cases are living, breathing cats. Geospatial analysis allows you to continue with the simple cat analogy and even visualize it. The following map represents the feral cat population of Australia using data provided by the Atlas of Living Australia (ALA):

Object-oriented programming for geospatial analysis

Importance of geospatial analysis

Geospatial analysis helps people make better decisions. It doesn't make the decision for you, but it can answer critical questions that are at the heart of the choice to be made and often cannot be answered any other way. Until recently, geospatial technology and data were tools available only to governments and well-funded researchers. However, in the last decade, data has become much more widely available and software much more accessible to anyone.

In addition to freely available government satellite imagery, many local governments now conduct aerial photo surveys and make the data available online. The ubiquitous Google Earth provides a cross-platform spinning globe view of the Earth with satellite and aerial data, streets, points of interest, photographs, and much more. Google Earth users can create custom Keyhole Markup Language (KML) files, which are XML files to load and style data to the globe. This program, and similar tools, are often called geographic exploration tools because they are excellent data viewers but provide very limited data analysis capability.

The ambitious OpenStreetMap project (http://www.openstreetmap.org) is a crowd-sourced, worldwide, geographic basemap containing most layers commonly found in a GIS. Nearly every mobile phone now contains a GPS along with mobile apps to collect GPS tracks as points, lines, or polygons. Most phones will also tag photos taken with the phone's camera with GPS coordinates. In short, anyone can be a geospatial analyst.

The global population has reached seven billion people. The world is changing faster than ever before. The planet is undergoing environmental changes never seen before in recorded history. Faster communication and transportation increase the interaction between us and the environment in which we live. Managing people and resources safely and responsibly is more challenging than ever. Geospatial analysis is the best approach to understanding our world more efficiently and deeply. The more politicians, activists, relief workers, parents, teachers, first responders, medical professionals, and small businesses harness the power of geospatial analysis, the more our potential for a better, healthier, safer, and fairer world will be realized.

Geographic information system concepts

In order to begin geospatial analysis, it is important to understand some key underlying concepts unique to the field. The list isn't long, but nearly every aspect of analysis traces back to one of these ideas.

Thematic maps

As its name suggests, a thematic map portrays a specific theme. A general reference map visually represents features as they relate geographically for navigation or planning. A thematic map goes beyond location to provide the geographic context for information around a central idea. Usually, a thematic map is designed for a targeted audience to answer specific questions. The value of thematic maps lies in what they do not show. A thematic map will use minimal geographic features to avoid distracting the reader from the theme. Most thematic maps include political boundaries such as country or state borders but omit navigational features, such as street names or points of interest beyond major landmarks that orient the reader. The cholera map by Dr. John Snow earlier in this chapter is a perfect example of a thematic map. Common uses for thematic maps are visualizing health issues, such as disease, election results, and environmental phenomena such as rainfall. These maps are also the most common output of geospatial analysis. The following map from the United States Census Bureau shows cancer mortality rates by state:

Thematic maps

Thematic maps tell a story and are very useful. However, it is important to remember that while thematic maps are models of reality as any other map, they are also generalizations of information. Two different analysts using the same source of information will often come up with very different thematic maps depending on how they analyze and summarize the data. They may also choose to focus on different aspects of the dataset. The technical nature of thematic maps often leads people to treat them as if they are scientific evidence. However, geospatial analysis is often inconclusive. While the analysis may be based on scientific data, the analyst does not always follow the rigor of the scientific method. In his classic book, How to Lie with Maps, Mark Monmonier, University of Chicago Press, demonstrates in great detail how maps are easily manipulated models of reality, which are commonly abused. This fact doesn't degrade the value of these tools. The legendary statistician, George Box, wrote in his 1987 book, Empirical Model-Building and Response Surfaces that, "Essentially, all models are wrong, but some are useful." Thematic maps have been used as guides to start (and end) wars, stop deadly diseases in their tracks, win elections, feed nations, fight poverty, protect endangered species, and rescue those impacted by disaster. Thematic maps may be the most useful models ever created.

Spatial databases

In its purest form, a database is simply an organized collection of information. A database management system (DBMS) is an interactive suite of software that can interact with a database. People often use the word database as a catch-all term referring to both the DBMS and underlying data structure. Databases typically contain alphanumeric data and, in some cases, binary large objects or blobs, which can store binary data such as images. Most databases also allow a relational database structure in which entries in normalized tables can be referenced to each other in order to create many-to-one and one-to-many relationships among data.

Spatial databases, also known as geodatabases, use specialized software to extend a traditional relational database management system (RDBMS) to store and query data defined in two-dimensional or three-dimensional space. Some systems also account for a series of data over time. In a spatial database, attributes about geographic features are stored and queried as traditional relational database structures. The spatial extensions allow you to query geometries using Structured Query Language (SQL) in a similar way as traditional database queries. Spatial queries and attribute queries can also be combined to select results based on both location and attributes.

Spatial indexing

Spatial indexing is a process that organizes the geospatial vector data for faster retrieval. It is a way of prefiltering the data for common queries or rendering. Indexing is commonly used in large databases to speed up returns to queries. Spatial data is no different. Even a moderately-sized geodatabase can contain millions of points or objects. If you perform a spatial query, every point in the database must be considered by the system in order to include it or eliminate it in the results. Spatial indexing groups data in ways that allow large portions of the dataset to be eliminated from consideration by doing computationally simpler checks before going into a detailed and slower analysis of the remaining items.

Metadata

Metadata is defined as data about data. Accordingly, geospatial metadata is data about geospatial datasets that provide traceability for the source and history of a dataset as well as summary of the technical details. Metadata also provides long-term preservation of information holdings. Geospatial metadata can be represented by several possible standards. One of the most prominent standards is the international standard, ISO 19115-1, which includes hundreds of potential fields to describe a single geospatial dataset. Additionally, the ISO 19115-2 includes extensions for geospatial imagery and gridded data. Some example fields include spatial representation, temporal extent, and lineage. The primary use of metadata is cataloging datasets. Modern metadata can be ingested by geographic search engines making it potentially discoverable by other systems automatically. It also lists points of contact for a dataset if you have questions. Metadata is an important support tool for geospatial analysts and adds credibility and accessibility to your work. The Open Geospatial Consortium (OGC) created the Catalog Service for the Web (CSW) to manage metadata. The pycsw Python library implements the CSW standard. You can learn more about it at http://pycsw.org.

Map projections

Map projections have entire books devoted to them and can be a challenge for new analysts. If you take any three-dimensional object and flatten it on a plane, such as your screen or a sheet of paper, the object is distorted. Many grade school geography classes demonstrate this concept by having students peel an orange and then attempt to lay the peel flat on their desk in order to understand the resulting distortion. The same effect occurs when you take the round shape of the Earth and project it on a computer screen.

In geospatial analysis, you can manipulate this distortion to preserve common properties, such as area, scale, bearing, distance, or shape. There is no one-size-fits-all solution to map projections. The choice of projection is always a compromise of gaining accuracy in one dimension in exchange for error in another. Projections are typically represented as a set of over 40 parameters as either XML or a text format called Well-Known Text (WKT), which is used to define the transformation algorithm.

The International Association of Oil & Gas Producers (IOGP) maintains a registry of the most known projections. The organization was formerly known as the European Petroleum Survey Group (EPSG). The entries in the registry are still known as EPSG codes. The EPSG maintained the registry as a common benefit for the oil and gas industry, which is a prolific user of geospatial analysis for energy exploration. At the last count, this registry contained over 5,000 entries.

As recently as 10 years ago, map projections were a primary concern for a geospatial analyst. Data storage was expensive, high-speed Internet was rare, and cloud computing didn't really exist. Geospatial data was typically exchanged among small groups working in separate areas of interest. The technology constraints at the time meant that geospatial analysis was highly localized. Analysts would use the best projection for their area of interest. Data in different projections cannot be displayed on the same map because they represent two different models of the Earth. Any time an analyst received data from a third party, it had to be reprojected before using it with the existing data. This process was tedious and time-consuming. Most geospatial data formats do not provide a way to store the projection information. This information is stored in an ancillary file as text or XML usually. As analysts didn't exchange data often, many people wouldn't bother defining projection information. Every analyst's nightmare was to come across an extremely valuable dataset missing the projection information. It rendered the dataset useless. The coordinates in the file are just numbers and offer no clue to the projection. With over 5,000 choices, it was nearly impossible to guess.

Now, thanks to modern software and the Internet making data exchange easier and more common, nearly every data format has added a metadata format that defines the projection or places it in the file header if supported. Advances in technology have also allowed for global basemaps, which allow for more common uses of projections such as the common Google Mercator projection used for Google Maps. This projection is also known as Web Mercator and uses code EPSG:3857 (or the deprecated EPSG:900913). Geospatial portal projects such as OpenStreetMap.org and NationalAtlas.gov have consolidated datasets for much of the world in common projections. Modern geospatial software can also reproject data on the fly saving the analyst the trouble of preprocessing the data before using it. Closely related to map projections are geodetic datums. A datum is a model of the Earth's surface used to match the location of features on the Earth to a coordinate system. One common datum is called WGS 84 that is used by GPS devices.

Rendering

The exciting part of geospatial analysis is visualization. As geospatial analysis is a computer-based process, it is good to be aware of how geographic data appears on a computer screen.

Geographic data including points, lines, and polygons are stored numerically as one or more points, which come in (x,y) pairs or (x,y,z) tuples. The x represents the horizontal axis on a graph. The y represents the vertical axis. The z represents terrain elevation. In computer graphics, a computer screen is represented by an x and y axis. A z axis is not used because the computer screen is treated as a two-dimensional plane by most graphics software APIs. However, as desktop computing power continues to improve, three-dimensional maps are starting to become more common.

Another important factor is screen coordinates versus world coordinates. Geographic data is stored in a coordinate system representing a grid overlaid on the Earth, which is three-dimensional and round. Screen coordinates, also known as pixel coordinates, represent a grid of pixels on a flat, two-dimensional computer screen. Mapping x and y world coordinates to pixel coordinates is fairly straightforward and involves a simple scaling algorithm. However, if a z coordinate exists, then a more complicated transform must be performed to map coordinates from three-dimensional space to a two-dimensional plane. These transformations can be computationally costly and therefore slow if not handled correctly.

In the case of remote sensing data, the challenge is typically the file size. Even a moderately-sized satellite image that is compressed can be tens, if not hundreds, of megabytes. Images can be compressed using lossless or lossy methods. Lossless methods use tricks to reduce the file size without discarding any data. Lossy compression algorithms reduce the file size by reducing the amount of data in the image while avoiding a significant change in the appearance of the image. Rendering an image on the screen can be computationally-intensive. Most remote sensing file formats allow for the storing of multiple lower-resolution versions of the image—called overviews or pyramids—for the sole purpose of faster rendering at different scales. When zoomed out from the image to a scale where you couldn't see the detail of the full resolution image, a preprocessed, lower-resolution version of the image is displayed quickly and seamlessly.

Remote sensing concepts

Most of the GIS concepts described also apply to raster data. However, raster data has some unique properties as well. Earlier in this chapter, in the history of remote sensing, the focus was on Earth imaging from aerial platforms. It is important to note that raster data can come in many forms including ground-based radar, laser range finders, and other specialized devices to detect gases, radiation, and other forms of energy in a geographic context. For the purpose of this book, we will focus on remote sensing platforms that capture large amounts of Earth data. These sources included Earth imaging systems, certain types of elevation data, and some weather systems where applicable.

Images as data

Raster data is captured digitally as square tiles. This means that the data is stored on a computer as a numerical array of rows and columns. If the data is multispectral, the dataset will usually contain multiple arrays of the same size, which are geospatially referenced together to represent a single area on the Earth. These different arrays are called bands. Any numerical array can be represented on a computer as an image. In fact, all computer data is ultimately numbers. It is important in geospatial analysis to think of images as a numeric array because mathematical formulas are used to process them.

In remotely sensed images, each pixel represents both space (location on the Earth of a certain size) and the reflectance captured as light reflected from the Earth at this location into space. So, each pixel has a ground size and contains a number representing the intensity. As each pixel is a number, we can perform mathematical equations on this data to combine data from different bands and highlight specific classes of objects in the image. If the wavelength value is beyond the visible spectrum, we can highlight features not visible to the human eye. Substances such as chlorophyll in plants can be greatly contrasted using a specific formula called Normalized Difference Vegetation Index (NDVI).

By processing remotely sensed images, we can turn this data into visual information. Using the NDVI formula, we can answer the question, what is the relative health of the plants in this image? You can also create new types of digital information, which can be used as input for computer programs to output other types of information.

Remote sensing and color

Computer screens display images as combinations of Red, Green, and Blue (RGB) to match the capability of the human eye. Satellites and other remote sensing imaging devices can capture light beyond this visible spectrum. On a computer, wavelengths beyond the visible spectrum are represented in the visible spectrum so that we can see them. These images are known as false color images. In remote sensing, for instance, infrared light makes moisture highly visible. This phenomenon has a variety of uses such as monitoring ground saturation during a flood or finding hidden leaks in a roof or levee.

Common vector GIS concepts

This section will discuss the different types of GIS processes commonly used in geospatial analysis. This list is not exhaustive; however, it provides you with the essential operations that all other operations are based on. If you understand these operations, you can quickly understand much more complex processes as they are either derivatives or combinations of these processes.

Data structures

GIS vector data uses coordinates consisting of, at a minimum, an x horizontal value and a y vertical value to represent a location on the Earth. In many cases, a point may also contain a z value. Other ancillary values are possible including measurements or timestamps.

These coordinates are used to form points, lines, and polygons to model real-world objects. Points can be a geometric feature in and of themselves or they can connect line segments. Closed areas created by line segments are considered polygons. Polygons model objects such as buildings, terrain, or political boundaries.

A GIS feature can consist of a single point, line, or polygon or it can consist of more than one shape. For example, in a GIS polygon dataset containing world country boundaries, the Philippines, which is made up of 7,107 islands, would be represented as a single country made up of thousands of polygons.

Vector data typically represents topographic features better than raster data. Vector data has better accuracy potential and is more precise. However, to collect vector data on a large scale is also traditionally more costly than raster data.

Two other important terms related to vector data structures are bounding box and convex hull. The bounding box or minimum bounding box is the smallest possible square that contains all of the points in a dataset. The following image demonstrates a bounding box for a collection of points:

Data structures

The convex hull of a dataset is similar to the bounding box, but instead of a square, it is the smallest possible polygon that can contain a dataset. The bounding box of a dataset always contains its convex hull. The following image shows the same point data as the previous example with the convex hull polygon shown in red:

Data structures

Buffer

A buffer operation can be applied to spatial objects including points, lines, or polygons. This operation creates a polygon around the object at a specified distance. Buffer operations are used for proximity analysis, for example, establishing a safety zone around a dangerous area. In the following image, the black shapes represent the original geometry while the red outlines represent the larger buffer polygons generated from the original shape:

Buffer

Dissolve

A dissolve operation creates a single polygon out of adjacent polygons. A common use for a dissolve operation is to merge two adjacent properties in a tax database that have been purchased by a single owner. Dissolves are also used to simplify data extracted from remote sensing:

Dissolve

Generalize

Objects that have more points than necessary for the geospatial model can be generalized to reduce the number of points used to represent the shape. This operation usually requires a few attempts to get the optimal number of points without compromising the overall shape. It is a data optimization technique to simplify data for the efficiency of computing or better visualization. This technique is useful in web-mapping applications. Computer screens have a resolution of 72 dots per inch (dpi). Highly-detailed point data, which would not be visible, can be reduced so that less bandwidth is used to send a visually equivalent map to the user:

Generalize

Intersection

An intersection operation is used to see if one part of a feature intersects with one or more features. This operation is for spatial queries in proximity analysis and is often a follow-on operation to a buffer analysis:

Intersection

Merge

A merge operation combines two or more non-overlapping shapes in a single multishape object. Multishape objects mean that the shapes maintain separate geometries but are treated as a single feature with a single set of attributes by the GIS:

Merge

Point in polygon

A fundamental geospatial operation is checking to see whether a point is inside a polygon. This one operation is the atomic building block of many different types of spatial queries. If the point is on the boundary of the polygon, it is considered inside. Very few spatial queries exist that do not rely on this calculation in some way. However, it can be very slow on a large number of points.

The most common and efficient algorithm to detect if a point is inside a polygon is called the ray casting algorithm. First, a test is performed to see if the point is on the polygon boundary. Next, the algorithm draws a line from the point in question in a single direction. The program counts the number of times the line crosses the polygon boundary until it reaches the bounding box of the polygon. The bounding box is the smallest box that can be drawn around the entire polygon. If the number is odd, the point is inside. If the number of boundary intersections is even, the point is outside:

Point in polygon

Union

The union operation is less common but very useful to combine two or more overlapping polygons in a single shape. It is similar to dissolve, but in this case, the polygons are overlapping as opposed to being adjacent. Usually, this operation is used to clean up automatically-generated feature datasets from remote sensing operations:

Union

Join

A join or SQL join is a database operation used to combine two or more tables of information. Relational databases are designed to avoid storing redundant information for one-to-many relationships. For example, a U.S. state may contain many cities. Rather than creating a table for each state containing all of its cities, a table of states with numeric IDs is created, while a table for all the cities in every state is created with a state numeric ID. In a GIS, you can also have spatial joins that are part of the spatial extension software for a database. In spatial joins, combine the attributes to two features in the same way that you do in a SQL join, but the relation is based on the spatial proximity of the two features. To follow the previous cities example, we could add the county name that each city resides in using a spatial join. The cities layer could be loaded over a county polygon layer whose attributes contain the county name. The spatial join would determine which city is in which county and perform a SQL join to add the county name to each city's attribute row.

Geospatial rules about polygons

In geospatial analysis, there are several general rules of thumb regarding polygons that are different from mathematical descriptions of polygons:

  • Polygons must have at least four points—the first and last points must be the same
  • A polygon boundary should not overlap itself
  • Polygons in a layer shouldn't overlap
  • A polygon in a layer inside another polygon is considered as a hole in the underlying polygon

Different geospatial software packages and libraries handle exceptions to these rules differently and can lead to confusing errors or software behaviors. The safest route is to make sure that your polygons obey these rules. There is one more important piece of information about polygons. A polygon is by definition a closed shape, which means that the first and last vertices of the polygon are identical. Some geospatial software will throw an error if you haven't explicitly duplicated the first point as the last point in the polygon dataset. Other software will automatically close the polygon without complaining. The data format that you use to store your geospatial data may also dictate how polygons are defined. This issue is a gray area and so it didn't make the polygon rules, but knowing this quirk will come in handy someday when you run into an error that you can't explain easily.

Common raster data concepts

As mentioned earlier, remotely-sensed raster data is a matrix of numbers. Remote sensing contains thousands of operations that can be performed on data. This field changes on almost a daily basis as new satellites are put into space and computer power increases. Despite its decades-long history, we haven't even scratched the surface of the knowledge that this field can provide to the human race. Once again, similar to the common GIS processes, this minimal list of operations gives you the basis to evaluate any technique used in remote sensing.

Band math

Band math is multidimensional array mathematics. In array math, arrays are treated as single units, which are added, subtracted, multiplied, and divided. However, in an array, the corresponding numbers in each row and column across multiple arrays are computed simultaneously. These arrays are termed matrices and computations involving matrices are the focus of linear algebra.

Change detection

Change detection is the process of taking two images of the same location at different times and highlighting the changes. A change can be due to the addition of something on the ground, such as a new building or the loss of a feature such as coastal erosion. There are many algorithms to detect changes among images and also determine qualitative factors such as how long ago the change took place. The following image from a research project by the U.S. Oak Ridge National Laboratory (ORNL) shows rainforest deforestation between 1984 and 2000 in the state of Rondonia, Brazil. Colors are used to show how recently the forest was cut. Green represents virgin rainforests, white is a forest cut within two years of the end of the date range, red is within 22 years, and the other colors fall in between as described in the legend:

Change detection

Histogram

A histogram is the statistical distribution of values in a dataset. The horizontal axis represents a unique value in a dataset while the vertical axis represents the frequency of this unique value in the raster. A histogram is a key operation in most raster processing. It can be used for everything from enhancing contrast in an image to serving as a basis for object classification and image comparison. The following example from NASA shows a histogram for a satellite image that has been classified into different categories representing the underlying surface features:

Histogram

Feature extraction

Feature extraction is the manual or automatic digitization of features in an image to points, lines, or polygons. This process serves as the basis for the vectorization of images in which a raster is converted to a vector dataset. An example of feature extraction is extracting a coastline from a satellite image and saving it as a vector dataset. If this extraction is performed over several years, you could monitor the erosion or other changes along this coastline.

Supervised classification

Objects on the Earth reflect different wavelengths of light depending on the materials that they are made of. In remote sensing, analysts collect wavelength signatures for specific types of land cover (for example, concrete) and build a library for a specific area. A computer can then use this library to automatically locate classes in the library in a new image of the same area.

Unsupervised classification

In an unsupervised classification, a computer groups pixels with similar reflectance values in an image without any other reference information other than the histogram of the image.

Creating the simplest possible Python GIS

Now that we have a better understanding of geospatial analysis, the next step is to build a simple GIS using Python called SimpleGIS. This small program will be a technically complete GIS with a geographic data model and the ability to render the data as a visual thematic map showing the population of different cities.

The data model will also be structured so that you can perform basic queries. Our SimpleGIS will contain the state of Colorado, three cities, and population counts for each city.

Most importantly, we will demonstrate the power and simplicity of Python programming by building this tiny system in pure Python. We will only use modules available in the standard Python distribution without downloading any third-party libraries.

Getting started with Python

As stated earlier, this book assumes that you have some basic knowledge of Python. The examples in this book are based on Python 3.4.3, which you can download here:

https://www.python.org/downloads/release/python-343/

The only module used in the following example is the turtle module that provides a very simple graphics engine based on the Tkinter library included with Python. If you used the installers for Windows or Mac OS X, the Tkinter library should be included already. If you compiled Python yourself or are using a distribution from somewhere besides Python.org, then make sure that you can import the turtle module by typing the following at a command prompt to run the turtle demo script:

python –m turtle

If your Python distribution does not have Tkinter, you can find information on installing it from the following page. The information is for Python 2.3 but the process is still the same:

http://tkinter.unpythonic.net/wiki/How_to_install_Tkinter

The official Python wiki page for Tkinter can be found here:

https://wiki.python.org/moin/TkInter

The documentation for Tkinter is in the Python Standard Library documentation that can be found at https://docs.python.org/2/library/tkinter.html.

If you are new to Python, Dive into Python is a free online book, which covers all the basics of Python and will bring you up to speed. For more information, refer to http://www.diveintopython.net.

Building SimpleGIS

The code is divided into two different sections. The first is the data model section and the second is the map renderer that draws this data. For the data model, we will use simple Python lists. A Python list is a native data type, which serves as a container for other Python objects in a specified order. Python lists can contain other lists and are great for simple data structures. They also map well to more complex structures or even databases if you decide you want to develop your script further.

The second portion of the code will render the map using the Python turtle graphics engine. We will have only one function in the GIS that converts the world coordinates, in this case, longitude and latitude, into pixel coordinates. All graphics engines have an origin point of (0,0) that is usually in the top-left or lower-left corner of the canvas. Turtle graphics are designed to teach programming visually. The turtle graphics canvas uses an origin of (0,0) in the center, similar to a graphing calculator. The following image illustrates the type of Cartesian graph that the turtle module uses. In the following graph, some points are plotted in both positive and negative space:

Building SimpleGIS

This also means that the turtle graphics engine can have negative pixel coordinates, which is uncommon for graphics canvases. However, for this example, the turtle module is the quickest and simplest way to render our map.

Step by step

You can run this program interactively in the Python interpreter or you can save the complete program as a script and run it. The Python interpreter is an incredibly powerful way to learn new concepts because it gives you real-time feedback on errors or unexpected program behavior. You can easily recover from these issues and try something else until you get the results that you want:

  1. In Python, you usually import modules at the beginning of the script so we'll import the turtle module first. We'll use Python's import as feature to assign the module the name t to save space and time when typing turtle commands:
    import turtle as t
    
  2. Next, we'll set up the data model starting with some simple variables that allow us to access list indexes by name instead of numbers to make the code easier to follow. Python lists index the contained objects starting with the number 0. So, if we want to access the first item in a list called myList, we would reference it as follows:
    myList[0]
    
  3. To make our code easier to read, we can also use a variable name assigned to commonly used indexes:
    firstItem = 0
    myList[firstItem]
    

    Note

    Downloading the example code

    You can download the example code files for all the Packt books that you have purchased from your account at http://www.packtpub.com. If you purchased this book elsewhere, you can visit http://www.packtpub.com/support and register in order to have the files e-mailed to you directly.

    In computer science, assigning commonly used numbers to an easy-to-remember variable is a common practice. These variables are called constants.

    So, for our example, we'll assign constants for some common elements used for all the cities. All cities will have a name, one or more points, and a population count:

    NAME = 0
    POINTS = 1
    POP = 2
    
  4. Now, we'll set up the data for Colorado as a list with name, polygon points, and population. Note that the coordinates are a list within a list:
    state = ["COLORADO", [[-109, 37],[-109, 41],[-102, 41],[-102, 37]], 5187582]
    
  5. The cities will be stored as nested lists. Each city's location consists of a single point as a longitude and latitude pair. These entries will complete our GIS data model. We'll start with an empty list called cities and then append the data to this list for each city:
    cities = []
    cities.append(["DENVER",[-104.98, 39.74], 634265])
    cities.append(["BOULDER",[-105.27, 40.02], 98889])
    cities.append(["DURANGO",[-107.88,37.28], 17069])
    
  6. We will now render our GIS data as a map by first defining a map size. The width and height can be anything that you want depending on your screen resolution:
    map_width = 400
    map_height = 300
    
  7. In order to scale the map to the graphics canvas, we must first determine the bounding box of the largest layer, which is the state. We'll set the map's bounding box to a global scale and reduce it to the size of the state. To do so, we'll loop through the longitude and latitude of each point and compare it with the current minimum and maximum x and y values. If it is larger than the current maximum or smaller than the current minimum, we'll make this value the new maximum or minimum, respectively:
    minx = 180
    maxx = -180
    miny = 90
    maxy = -90 
    forx,y in state[POINTS]:
    if x < minx: minx = x
      elif x > maxx: maxx = x
      if y < miny: miny = y
      elif y > maxy: maxy = y
    
  8. The second step to scaling is to calculate a ratio between the actual state and the tiny canvas that we will render it on. This ratio is used for coordinate to pixel conversion. We get the size along the x and y axes of the state and then we divide the map width and height by these numbers to get our scaling ratio:
    dist_x = maxx - minx
    dist_y = maxy - miny
    x_ratio = map_width / dist_x
    y_ratio = map_height / dist_y
    
  9. The following function, called convert(), is our only function in SimpleGIS. It transforms a point in the map coordinates from one of our data layers to pixel coordinates using the previous calculations. You'll notice that, at the end, we divide the map width and height in half and subtract it from the final conversion to account for the unusual center origin of the turtle graphics canvas. Every geospatial program has some form of this function:
    def convert(point):
      lon = point[0]
      lat = point[1]
      x = map_width - ((maxx - lon) * x_ratio)
      y = map_height - ((maxy - lat) * y_ratio)
      # Python turtle graphics start in the 
      # middle of the screen
      # so we must offset the points so they are centered
      x = x - (map_width/2)
      y = y - (map_height/2)
      return [x,y]
    
  10. Now for the exciting part! We're ready to render our GIS as a thematic map. The turtle module uses the concept of a cursor called a pen. Moving the cursor around the canvas is exactly the same as moving a pen around a piece of paper. The cursor will draw a line when you move it. So, you'll notice that throughout the code, we use the t.up() and t.down() commands to pick the pen up when we want to move to a new location and put it down when we're ready to draw. We have some important steps in this section. As the border of Colorado is a polygon, we must draw a line between the last point and first point to close the polygon. We can also leave out the closing step and just add a duplicate point to the Colorado dataset. Once we draw the state, we'll use the write() method to label the polygon:
    t.up()
    first_pixel = None
    for point in state[POINTS]:
      pixel = convert(point)
      if not first_pixel:
        first_pixel = pixel
      t.goto(pixel)
      t.down()
    t.goto(first_pixel)
    t.up()
    t.goto([0,0])
    t.write(state[NAME], align="center", font=("Arial",16,"bold"))
    
  11. If we were to run the code at this point, we would see a simplified map of the state of Colorado, as shown in the following screenshot:
    Step by step

    Note

    If you do try to run the code, you'll need to temporarily add the following line at the end, or the Tkinter window will close as soon as it finishes drawing:

    t.done()
    
  12. Now, we'll render the cities as point locations and label them with their names and population. As the cities are a group of features in a list, we'll loop through them to render them. Instead of drawing lines by moving the pen around, we'll use the turtle dot() method to plot a small circle at the pixel coordinate returned by our SimpleGISconvert() function. We'll then label the dot with the city's name and add the population. You'll notice that we must convert the population number to a string in order to use it in the turtle write() method. To do so, we use Python's built-in function, str():
      #for city in cities:
      pixel = convert(city[POINTS])
      t.up()
      t.goto(pixel)
      # Place a point for the city
      t.dot(10)
      # Label the city
      t.write(city[NAME] + ", Pop.: " + str(city[POP]), align="left")
      t.up()
    
  13. Now we will perform one last operation to prove that we have created a real GIS. We will perform an attribute query on our data to determine which city has the largest population. Then, we'll perform a spatial query to see which city lies the furthest west. Finally, we'll print the answers to our questions on our thematic map page safely out of the range of the map.
  14. As our query engine, we'll use Python's built-in min() and max() functions. These functions take a list as an argument and return the minimum and maximum values of this list. These functions have a special feature called a key argument that allows you to sort complex objects. As we are dealing with nested lists in our data model, we'll take advantage of the key argument in these functions. The key argument accepts a function that temporarily alters the list for evaluation before a final value is returned. In this case, we want to isolate the population values for comparison and then the points. We could write a whole new function to return the specified value, but we can use Python's lambda keyword instead. The lambda keyword defines an anonymous function that is used inline. Other Python functions can be used inline, for example, the string function, str(), but they are not anonymous. This temporary function will isolate our value of interest.
  15. So our first question is, which city has the largest population?
    biggest_city = max(cities, key=lambda city:city[POP])
    t.goto(0,-200)
    t.write("The biggest city is: " +  biggest_city[NAME])
    
  16. The next question is, which city lies the furthest west?
    western_city = min(cities, key=lambda city:city[POINTS])
    t.goto(0,-220)
    t.write("The western-most city is: " + western_city[NAME])
    
  17. In the preceding query, we use Python's built in min() function to select the smallest longitude value and this works because we represented our city locations as longitude and latitude pairs. It is possible to use different representations for points including possible representations where this code would need modification to work correctly. However, for our SimpleGIS, we are using a common point representation to make it as intuitive as possible.

These last two commands are just for clean up purposes. First, we hide the cursor. Then, we call the turtle done() method, which will keep the turtle graphics window with our map open until we choose to close it using the close handle at the top of the window.

t.pen(shown=False)
t.done()

Whether you followed along using the Python interpreter or you ran the complete program as a script, you should see the following map rendered in real time:

Step by step

Congratulations! You have followed in the footsteps of Paleolithic hunters, the father of GIS Dr. Roger Tomlinson, geospatial pioneer Howard Fisher, and game-changing humanitarian programmers to create a functional, extensible, and technically complete geographic information system. It took less than 60 lines of pure Python code! You will be hard-pressed to find a programming language that can create a complete GIS using only its core libraries in such a finite amount of readable code as Python. Even if you did, it is highly unlikely that the language would survive the geospatial Python journey that you'll take through the rest of this book.

As you can see, there is lots of room for expansion of SimpleGIS. Here are some other ways that you might expand this simple tool using the reference material for Tkinter and Python linked at the beginning of this section:

  • Create an overview map in the top-right corner with a U.S. border outline and Colorado's location in the U.S.
  • Add color for visual appeal and further clarity
  • Create a map key for different features
  • Make a list of states and cities and add more states and cities
  • Add a title to the map
  • Create a bar chart to compare population numbers visually

The possibilities are endless. SimpleGIS can also be used as a way to quickly test and visualize geospatial algorithms that you come across. If you want to add more data layers, you can create more lists, but these lists would become difficult to manage. In this case, you can use another Python module included in the standard distribution. The SQLite module provides a SQL-like database in Python that can be saved to disk or run in memory.

Summary

Well done! You are now a geospatial analyst. In this chapter, you learned the state of the art of geospatial analysis through the story of Ushahidi and the Ebola virus. You learned the history of geospatial analysis and the technologies that support it. You became familiar with foundational GIS and remote sensing concepts that will serve you through the rest of the book. You actually built a working GIS that can be expanded to do whatever you can imagine! In the next chapter, we'll tackle the data formats that you'll encounter as geospatial analysts. Geospatial analysts spend far more time dealing with data than actually performing analysis. Understanding the data that you're working with is essential to working efficiently and having fun.

Left arrow icon Right arrow icon
Download code icon Download Code

Key benefits

  • Construct applications for GIS development by exploiting Python
  • This focuses on built-in Python modules and libraries compatible with the Python Packaging Index distribution system—no compiling of C libraries necessary
  • This practical, hands-on tutorial teaches you all about Geospatial analysis in Python

Description

Geospatial Analysis is used in almost every field you can think of from medicine, to defense, to farming. This book will guide you gently into this exciting and complex field. It walks you through the building blocks of geospatial analysis and how to apply them to influence decision making using the latest Python software. Learning Geospatial Analysis with Python, 2nd Edition uses the expressive and powerful Python 3 programming language to guide you through geographic information systems, remote sensing, topography, and more, while providing a framework for you to approach geospatial analysis effectively, but on your own terms. We start by giving you a little background on the field, and a survey of the techniques and technology used. We then split the field into its component specialty areas: GIS, remote sensing, elevation data, advanced modeling, and real-time data. This book will teach you everything you need to know about, Geospatial Analysis from using a particular software package or API to using generic algorithms that can be applied. This book focuses on pure Python whenever possible to minimize compiling platform-dependent binaries, so that you don’t become bogged down in just getting ready to do analysis. This book will round out your technical library through handy recipes that will give you a good understanding of a field that supplements many a modern day human endeavors.

Who is this book for?

If you are a Python developer, researcher, or analyst who wants to perform Geospatial, modeling, and GIS analysis with Python, then this book is for you. Familarity with digital mapping and analysis using Python or another scripting language for automation or crunching data manually is appreciated

What you will learn

  • Automate Geospatial analysis workflows using Python
  • Code the simplest possible GIS in 60 lines of Python
  • Mold thematic maps with Python tools
  • Get hold of the various forms that geospatial data comes in
  • Produce elevation contours using Python tools
  • Create flood inundation models
  • Apply Geospatial analysis to find out about real-time data tracking and for storm chasing

Product Details

Country selected
Publication date, Length, Edition, Language, ISBN-13
Publication date : Dec 31, 2015
Length: 394 pages
Edition : 1st
Language : English
ISBN-13 : 9781783552429
Category :
Languages :

What do you get with a Packt Subscription?

Free for first 7 days. $19.99 p/m after that. Cancel any time!
Product feature icon Unlimited ad-free access to the largest independent learning library in tech. Access this title and thousands more!
Product feature icon 50+ new titles added per month, including many first-to-market concepts and exclusive early access to books as they are being written.
Product feature icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Product feature icon Thousands of reference materials covering every tech concept you need to stay up to date.
Subscribe now
View plans & pricing

Product Details

Publication date : Dec 31, 2015
Length: 394 pages
Edition : 1st
Language : English
ISBN-13 : 9781783552429
Category :
Languages :

Packt Subscriptions

See our plans and pricing
Modal Close icon
€18.99 billed monthly
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Simple pricing, no contract
€189.99 billed annually
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just €5 each
Feature tick icon Exclusive print discounts
€264.99 billed in 18 months
Feature tick icon Unlimited access to Packt's library of 7,000+ practical books and videos
Feature tick icon Constantly refreshed with 50+ new titles a month
Feature tick icon Exclusive Early access to books as they're written
Feature tick icon Solve problems while you work with advanced search and reference features
Feature tick icon Offline reading on the mobile app
Feature tick icon Choose a DRM-free eBook or Video every month to keep
Feature tick icon PLUS own as many other DRM-free eBooks or Videos as you like for just €5 each
Feature tick icon Exclusive print discounts

Frequently bought together


Stars icon
Total 125.97
Python Geospatial Development
€41.99
Python Geospatial Analysis Cookbook
€41.99
Learning Geospatial Analysis with Python-Second Edition
€41.99
Total 125.97 Stars icon

Table of Contents

11 Chapters
1. Learning Geospatial Analysis with Python Chevron down icon Chevron up icon
2. Geospatial Data Chevron down icon Chevron up icon
3. The Geospatial Technology Landscape Chevron down icon Chevron up icon
4. Geospatial Python Toolbox Chevron down icon Chevron up icon
5. Python and Geographic Information Systems Chevron down icon Chevron up icon
6. Python and Remote Sensing Chevron down icon Chevron up icon
7. Python and Elevation Data Chevron down icon Chevron up icon
8. Advanced Geospatial Python Modeling Chevron down icon Chevron up icon
9. Real-Time Data Chevron down icon Chevron up icon
10. Putting It All Together Chevron down icon Chevron up icon
Index Chevron down icon Chevron up icon

Customer reviews

Rating distribution
Full star icon Full star icon Full star icon Half star icon Empty star icon 3.8
(4 Ratings)
5 star 50%
4 star 25%
3 star 0%
2 star 0%
1 star 25%
Zack Jul 11, 2016
Full star icon Full star icon Full star icon Full star icon Full star icon 5
This excellent book starts with a deep history of geospatial science and then dives into practical applications of the technology for common mapping problems. What I really like about this book is that it doesn't stop at "here's how to put a Google maps widget into your web application". This book goes deeper and explains how to use real geospatial analysis. In my personal experience, knowing how to use those analytic techniques opened up new possibilities in applications that greatly increased their usefulness.A lot of material is covered in this book and it would serve as an excellent primer to anyone who's been handed a mapping project but doesn't know where to start. GIS can be a bit overwhelming at first because it's really its own little world. In order to build a working app you usually wind up using several different software libraries, special file formats like shapefile, and spatial databases. This book gives an excellent overview of each and shows how to practically apply these new skills to solve real problems.I also recommend this book if you're a GIS pro but you've spent most of your career looking at the world through an Esri lens. The open source software covered is worth knowing and you may find yourself turning to it where you would normally reach for Arc*. It's amazing how simple and lightweight some of the applications are.
Amazon Verified review Amazon
John A. Maurer IV Jan 22, 2016
Full star icon Full star icon Full star icon Full star icon Full star icon 5
DIY GIS via Python. Why spend gobs of money on ESRI ArcGIS or Matlab when you can do it yourself for free with Python? Power to the people (er, programmer)! Go Pythonistas! This book would make a fantastic undergraduate- and/or graduate-level textbook for an alternative Python-based GIS or scientific computing class.Not only does this book lay the groundwork to sufficiently educate the reader on geospatial analysis (its history, basic terminology, etc.), it has relevant, fun examples, plentiful screenshots throughout, and an enthusiastic and inspiring tone. It provides a crystal clear breakdown of key GIS concepts, giving equal weight to both vector and raster data sources. Motivates the reader to use programming for geospatial analysis as opposed to just traditional "point-and-click" GIS software. With programming, the possibilities are practically limitless: utilities can be coded to meet specific needs rather than being limited to whatever canned set of functions a particular software package provides.Already we get our hands dirty building a simple Python GIS example in chapter 1.Chapter 2 provides a useful survey of data formats, which can otherwise feel like a dizzying and overwhelming array of options for the novitiate. The chapter helps boil this down into the various types, categorized by vector or raster, human-readable or binary. Even in a book focused primarily on Python, it is important to lay this kind of groundwork so that the reader isn’t later bogged down or confused simply by the chosen data format of a given example, etc. The author also covers Open Geospatial Consortium (OGC) web services, web mapping, and GeoJSON.Chapter 3 highlights many of the big players in today’s geotech industry in an organized fashion that helps make sense out of the chaos: an invaluable overview for newbies to bring them up to speed on a diverse technology stack. While it is not Python per se, the chapter brings the focus back to Python at the end.Chapter 4 surveys many of the important Python geo-modules with good examples of how to use them.Chapter 5 delves more deeply into a few Python modules for greater enrichment. The reader learns a whole slew of handy tricks and tips and could already easily adapt the numerous examples provided to solve many real-world GIS problems. Highlights include Shapefile manipulation, data visualization, reading Excel spreadsheets, geocoding, and parsing GPS data.While chapter 5 focuses on aspects of vector data, chapter 6 spreads the love to raster data, accomplishing many of the more common (though complicated) remote sensing (i.e. satellite data) tasks.Chapter 7 illustrates the complexities and advantages of elevation (DEM) datasets and how Python can be leveraged to process and visualize them—-a useful follow-on to the previous vector and raster chapters since DEMs are part both (and more). With contours, shaded relief maps, and color-coded rasters, there are unique ways of analyzing elevation that differ from other datasets. Another highlight for me was the inclusion of LiDAR data.Chapter 8 showcases the kind of “heavy lifting” that can be achieved with all of the skills accrued earlier in the book, including terrain routing, street routing, flood inundation models, and vegetation analysis (via NDVI). It shows off the capabilities and flexibility inherent to a Python GIS approach.Chapter 9 goes beyond the more "static" GIS paradigm and addresses time. It puts near real-time information (tracking bus locations) onto maps, both static maps and interactive ones (via Leaflet). This chapter introduces readers to a typical Web GIS workflow using REST, Web Map Service (WMS), XML, and OpenStreetMaps.The closing chapter (chapter 10) does a good job of combining lots of the previous lessons into one “grand finale”, including vector, raster, hillshades, and real time data using state of the art examples, also incorporating Google Charts and producing PDF reports in the finished product.As the proverb goes: "Give a man a fish and you feed him for a day; teach a man to fish and you feed him for a lifetime". In a similar spirit, giving the "GIS" analyst a GUI-based software package solves a limited set of problems and leaves them hungry for the next upgrade and new buttons to press (often blindly); teach them to program, however, and they can solve any problem themselves. And they will also likely gain a better understanding of the processing that is involved along the way.
Amazon Verified review Amazon
J Parkinson Aug 12, 2016
Full star icon Full star icon Full star icon Full star icon Empty star icon 4
Great introduction to the topic. Lots of useful examples.
Amazon Verified review Amazon
John B. Nelson Nov 15, 2016
Full star icon Empty star icon Empty star icon Empty star icon Empty star icon 1
The easiest way to justify my one star review is with an example: The code listing starting on page 207 and extending to page 209 uses turtle graphics to draw a histogram.
Amazon Verified review Amazon
Get free access to Packt library with over 7500+ books and video courses for 7 days!
Start Free Trial

FAQs

What is included in a Packt subscription? Chevron down icon Chevron up icon

A subscription provides you with full access to view all Packt and licnesed content online, this includes exclusive access to Early Access titles. Depending on the tier chosen you can also earn credits and discounts to use for owning content

How can I cancel my subscription? Chevron down icon Chevron up icon

To cancel your subscription with us simply go to the account page - found in the top right of the page or at https://subscription.packtpub.com/my-account/subscription - From here you will see the ‘cancel subscription’ button in the grey box with your subscription information in.

What are credits? Chevron down icon Chevron up icon

Credits can be earned from reading 40 section of any title within the payment cycle - a month starting from the day of subscription payment. You also earn a Credit every month if you subscribe to our annual or 18 month plans. Credits can be used to buy books DRM free, the same way that you would pay for a book. Your credits can be found in the subscription homepage - subscription.packtpub.com - clicking on ‘the my’ library dropdown and selecting ‘credits’.

What happens if an Early Access Course is cancelled? Chevron down icon Chevron up icon

Projects are rarely cancelled, but sometimes it's unavoidable. If an Early Access course is cancelled or excessively delayed, you can exchange your purchase for another course. For further details, please contact us here.

Where can I send feedback about an Early Access title? Chevron down icon Chevron up icon

If you have any feedback about the product you're reading, or Early Access in general, then please fill out a contact form here and we'll make sure the feedback gets to the right team. 

Can I download the code files for Early Access titles? Chevron down icon Chevron up icon

We try to ensure that all books in Early Access have code available to use, download, and fork on GitHub. This helps us be more agile in the development of the book, and helps keep the often changing code base of new versions and new technologies as up to date as possible. Unfortunately, however, there will be rare cases when it is not possible for us to have downloadable code samples available until publication.

When we publish the book, the code files will also be available to download from the Packt website.

How accurate is the publication date? Chevron down icon Chevron up icon

The publication date is as accurate as we can be at any point in the project. Unfortunately, delays can happen. Often those delays are out of our control, such as changes to the technology code base or delays in the tech release. We do our best to give you an accurate estimate of the publication date at any given time, and as more chapters are delivered, the more accurate the delivery date will become.

How will I know when new chapters are ready? Chevron down icon Chevron up icon

We'll let you know every time there has been an update to a course that you've bought in Early Access. You'll get an email to let you know there has been a new chapter, or a change to a previous chapter. The new chapters are automatically added to your account, so you can also check back there any time you're ready and download or read them online.

I am a Packt subscriber, do I get Early Access? Chevron down icon Chevron up icon

Yes, all Early Access content is fully available through your subscription. You will need to have a paid for or active trial subscription in order to access all titles.

How is Early Access delivered? Chevron down icon Chevron up icon

Early Access is currently only available as a PDF or through our online reader. As we make changes or add new chapters, the files in your Packt account will be updated so you can download them again or view them online immediately.

How do I buy Early Access content? Chevron down icon Chevron up icon

Early Access is a way of us getting our content to you quicker, but the method of buying the Early Access course is still the same. Just find the course you want to buy, go through the check-out steps, and you’ll get a confirmation email from us with information and a link to the relevant Early Access courses.

What is Early Access? Chevron down icon Chevron up icon

Keeping up to date with the latest technology is difficult; new versions, new frameworks, new techniques. This feature gives you a head-start to our content, as it's being created. With Early Access you'll receive each chapter as it's written, and get regular updates throughout the product's development, as well as the final course as soon as it's ready.We created Early Access as a means of giving you the information you need, as soon as it's available. As we go through the process of developing a course, 99% of it can be ready but we can't publish until that last 1% falls in to place. Early Access helps to unlock the potential of our content early, to help you start your learning when you need it most. You not only get access to every chapter as it's delivered, edited, and updated, but you'll also get the finalized, DRM-free product to download in any format you want when it's published. As a member of Packt, you'll also be eligible for our exclusive offers, including a free course every day, and discounts on new and popular titles.