Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Newsletter Hub
Free Learning
Arrow right icon
timer SALE ENDS IN
0 Days
:
00 Hours
:
00 Minutes
:
00 Seconds
Arrow up icon
GO TO TOP
In-Memory Analytics with Apache Arrow

You're reading from   In-Memory Analytics with Apache Arrow Accelerate data analytics for efficient processing of flat and hierarchical data structures

Arrow left icon
Product type Paperback
Published in Sep 2024
Publisher Packt
ISBN-13 9781835461228
Length 406 pages
Edition 2nd Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Matthew Topol Matthew Topol
Author Profile Icon Matthew Topol
Matthew Topol
Arrow right icon
View More author details
Toc

Table of Contents (18) Chapters Close

Preface 1. Part 1: Overview of What Arrow is, Its Capabilities, Benefits, and Goals FREE CHAPTER
2. Chapter 1: Getting Started with Apache Arrow 3. Chapter 2: Working with Key Arrow Specifications 4. Chapter 3: Format and Memory Handling 5. Part 2: Interoperability with Arrow: The Power of Open Standards
6. Chapter 4: Crossing the Language Barrier with the Arrow C Data API 7. Chapter 5: Acero: A Streaming Arrow Execution Engine 8. Chapter 6: Using the Arrow Datasets API 9. Chapter 7: Exploring Apache Arrow Flight RPC 10. Chapter 8: Understanding Arrow Database Connectivity (ADBC) 11. Chapter 9: Using Arrow with Machine Learning Workflows 12. Part 3: Real-World Examples, Use Cases, and Future Development
13. Chapter 10: Powered by Apache Arrow 14. Chapter 11: How to Leave Your Mark on Arrow 15. Chapter 12: Future Development and Plans 16. Index 17. Other Books You May Enjoy

Playing with data, wherever it might be!

Modern data science, machine learning (ML), and other data manipulation techniques frequently require data to be merged from multiple locations to perform tasks. Often, this data isn’t locally accessible but rather is stored in some form of cloud storage. Most of the implementations of the Arrow libraries provide native support for local filesystem access, Amazon Web Services Simple Storage Service (AWS S3), Microsoft Azure FileSystem, Google Cloud Storage (GCS), and Hadoop Distributed File System (HDFS). In addition to the natively supported systems, filesystem interfaces are generally implemented or used in language-specific cases to make it easy to add support for other filesystems.

Once you’re able to access the platform your files are located on (whether that is local, in the cloud, or otherwise), you need to make sure that the data is in a format that is supported by the Arrow libraries for importing. Check the documentation...

lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime