In Chapter 5, Word Embeddings and Distance Measurements for Text, we looked at how information related to the ordering of words, along with their semantics, can be taken into account when building embeddings to represent words. The idea of building embeddings will be extended in this chapter. We will explore techniques that will help us build embeddings for documents and sentences, as well as words based on their characters. We will start by looking into an algorithm called Doc2Vec, which, as the name suggests, provides document- or paragraph-level contextual embeddings. A sentence can essentially be treated as a paragraph, and embeddings for individual sentences can also be obtained using Doc2Vec. We will briefly discuss techniques such as Sent2Vec, which are focused on obtaining embeddings for sentences based on...
United States
United Kingdom
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Argentina
Austria
Belgium
Bulgaria
Chile
Colombia
Cyprus
Czechia
Denmark
Ecuador
Egypt
Estonia
Finland
Greece
Hungary
Indonesia
Ireland
Italy
Japan
Latvia
Lithuania
Luxembourg
Malaysia
Malta
Mexico
Netherlands
New Zealand
Norway
Philippines
Poland
Portugal
Romania
Singapore
Slovakia
Slovenia
South Africa
South Korea
Sweden
Switzerland
Taiwan
Thailand
Turkey
Ukraine