As we previously pointed out in the LSTM architecture, it is fed the memory and activation values from the previous timestep separately. This is distinctly separate from the assumption we made with the GRU unit, where at = ct. This dual manner of data processing is what lets us conserve relevant representations in memory across very long sequences, potentially even 1,000 timesteps! The activations are, however, always functionally related to the memory (ct) at each time step. So, we can compute the activations at a given timestep by first applying a tanh function to the memory (ct), then performing an element-wise computation of the result with the output gate value (Γo). Note that we do not initialize a weight matrix at this step, but simply apply tanh to each element in the (ct) vector. This can be mathematically represented as follows...
United States
Great Britain
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Singapore
Hungary
Ukraine
Luxembourg
Estonia
Lithuania
South Korea
Turkey
Switzerland
Colombia
Taiwan
Chile
Norway
Ecuador
Indonesia
New Zealand
Cyprus
Denmark
Finland
Poland
Malta
Czechia
Austria
Sweden
Italy
Egypt
Belgium
Portugal
Slovenia
Ireland
Romania
Greece
Argentina
Netherlands
Bulgaria
Latvia
South Africa
Malaysia
Japan
Slovakia
Philippines
Mexico
Thailand