All that we are doing here is applying a set of weights (that is, a filter) to local input spaces for feature extraction. We do this iteratively, moving our filter across the input space in fixed steps, known as a stride. Moreover, the use of different filters allows us to capture different patterns from a given input. Finally, since the filters convolve over the entire image, we are able to spatially share parameters for a given filter. This allows us to use the same filter to detect similar patterns in different locations of the image, relating to the concept of spatial invariance discussed earlier. However, these activation maps that a convolutional layer outputs are essentially abstract high-dimensional representations. We need to implement a mechanism to reduce these representations into more manageable dimensions, before we go ahead...
United States
Great Britain
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Singapore
Hungary
Ukraine
Luxembourg
Estonia
Lithuania
South Korea
Turkey
Switzerland
Colombia
Taiwan
Chile
Norway
Ecuador
Indonesia
New Zealand
Cyprus
Denmark
Finland
Poland
Malta
Czechia
Austria
Sweden
Italy
Egypt
Belgium
Portugal
Slovenia
Ireland
Romania
Greece
Argentina
Netherlands
Bulgaria
Latvia
South Africa
Malaysia
Japan
Slovakia
Philippines
Mexico
Thailand