Search icon CANCEL
Subscription
0
Cart icon
Your Cart (0 item)
Close icon
You have no products in your basket yet
Save more on your purchases now! discount-offer-chevron-icon
Savings automatically calculated. No voucher code required.
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Machine Learning with TensorFlow.js

You're reading from   Hands-On Machine Learning with TensorFlow.js A guide to building ML applications integrated with web technology using the TensorFlow.js library

Arrow left icon
Product type Paperback
Published in Nov 2019
Publisher Packt
ISBN-13 9781838821739
Length 296 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Kai Sasaki Kai Sasaki
Author Profile Icon Kai Sasaki
Kai Sasaki
Arrow right icon
View More author details
Toc

Table of Contents (17) Chapters Close

Preface 1. Section 1: The Rationale of Machine Learning and the Usage of TensorFlow.js FREE CHAPTER
2. Machine Learning for the Web 3. Importing Pretrained Models into TensorFlow.js 4. TensorFlow.js Ecosystem 5. Section 2: Real-World Applications of TensorFlow.js
6. Polynomial Regression 7. Classification with Logistic Regression 8. Unsupervised Learning 9. Sequential Data Analysis 10. Dimensionality Reduction 11. Solving the Markov Decision Process 12. Section 3: Productionizing Machine Learning Applications with TensorFlow.js
13. Deploying Machine Learning Applications 14. Tuning Applications to Achieve High Performance 15. Future Work Around TensorFlow.js 16. Other Books You May Enjoy

Unsupervised Learning

So far, we've demonstrated how supervised learning works by looking at examples of regression and classification problems. In supervised learning, we already know the answer that will be predicted. In this chapter, the unsupervised learning problem will be introduced. This type of problem doesn't need the dataset to include the target value. We need to find the hidden pattern without any explicit target.

The clustering problem is a typical setting for unsupervised learning. It tries to make a group of samples in a natural manner. This chapter covers some ideas and algorithms that are useful for making groups of data points that focus on the implementation of the K-means algorithm.

The following topics will be covered in this chapter:

  • What is unsupervised learning?
  • Learning how K-means works
  • Generalizing K-means with the EM algorithm
  • Clustering...
lock icon The rest of the chapter is locked
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at $19.99/month. Cancel anytime