Search icon CANCEL
Arrow left icon
Explore Products
Best Sellers
New Releases
Books
Videos
Audiobooks
Learning Hub
Conferences
Free Learning
Arrow right icon
Arrow up icon
GO TO TOP
Hands-On Machine Learning with scikit-learn and Scientific Python Toolkits

You're reading from   Hands-On Machine Learning with scikit-learn and Scientific Python Toolkits A practical guide to implementing supervised and unsupervised machine learning algorithms in Python

Arrow left icon
Product type Paperback
Published in Jul 2020
Publisher Packt
ISBN-13 9781838826048
Length 384 pages
Edition 1st Edition
Languages
Arrow right icon
Author (1):
Arrow left icon
Tarek Amr Tarek Amr
Author Profile Icon Tarek Amr
Tarek Amr
Arrow right icon
View More author details
Toc

Table of Contents (18) Chapters Close

Preface 1. Section 1: Supervised Learning
2. Introduction to Machine Learning FREE CHAPTER 3. Making Decisions with Trees 4. Making Decisions with Linear Equations 5. Preparing Your Data 6. Image Processing with Nearest Neighbors 7. Classifying Text Using Naive Bayes 8. Section 2: Advanced Supervised Learning
9. Neural Networks – Here Comes Deep Learning 10. Ensembles – When One Model Is Not Enough 11. The Y is as Important as the X 12. Imbalanced Learning – Not Even 1% Win the Lottery 13. Section 3: Unsupervised Learning and More
14. Clustering – Making Sense of Unlabeled Data 15. Anomaly Detection – Finding Outliers in Data 16. Recommender System – Getting to Know Their Taste 17. Other Books You May Enjoy
Preface

You have already seen Harvard Business Review describing data science as the sexiest job of the 21st century. You have been watching terms such as machine learning and artificial intelligence pop up around you in the news all the time. You aspire to join this league of machine learning data scientists soon. Or maybe, you are already in the field but want to take your career to the next level. You want to learn more about the underlying statistical and mathematical theory, and apply this new knowledge using the most commonly used tool among practitioners, scikit-learn.

This book is here for you. It begins with an explanation of machine learning concepts and fundamentals and strikes a balance between theoretical concepts and their applications. Each chapter covers a different set of algorithms and shows you how to use them to solve real-life problems. You'll also learn various key supervised and unsupervised machine learning algorithms using practical examples. Whether it is an instance-based learning algorithm, Bayesian estimation, a deep neural network, a tree-based ensemble, or a recommendation system, you'll gain a thorough understanding of its theory and learn when to apply it to real-life problems.

This book will not stop at scikit-learn, but will help you add even more tools to your toolbox. You will augment scikit-learn with other tools such as pandas, Matplotlib, imbalanced-learn, and scikit-surprise. By the end of this book, you will be able to orchestrate these tools together to take a data-driven approach to providing end-to-end machine learning solutions.

lock icon The rest of the chapter is locked
Next Section arrow right
Register for a free Packt account to unlock a world of extra content!
A free Packt account unlocks extra newsletters, articles, discounted offers, and much more. Start advancing your knowledge today.
Unlock this book and the full library FREE for 7 days
Get unlimited access to 7000+ expert-authored eBooks and videos courses covering every tech area you can think of
Renews at €18.99/month. Cancel anytime