In this chapter, we explored the foundations of DL from the basics of the simple single perceptron to more complex multilayer perceptron models. We started with the past, present, and future of DL and, from there, we built a basic reference implementation of a single perceptron so that we could understand the raw simplicity of DL. Then we built on our knowledge by adding more perceptrons into a multiple layer implementation using TF. Using TF allowed us to see how a raw internal model is represented and trained with a much more complex dataset, MNIST. Then we took a long journey through the math, and although a lot of the complex math was abstracted away from us with Keras, we took an in-depth look at how gradient descent and backpropagation work. Finally, we finished off the chapter with another reference implementation from Keras that featured an autoencoder. Auto encoding...
United States
Great Britain
India
Germany
France
Canada
Russia
Spain
Brazil
Australia
Singapore
Hungary
Ukraine
Luxembourg
Estonia
Lithuania
South Korea
Turkey
Switzerland
Colombia
Taiwan
Chile
Norway
Ecuador
Indonesia
New Zealand
Cyprus
Denmark
Finland
Poland
Malta
Czechia
Austria
Sweden
Italy
Egypt
Belgium
Portugal
Slovenia
Ireland
Romania
Greece
Argentina
Netherlands
Bulgaria
Latvia
South Africa
Malaysia
Japan
Slovakia
Philippines
Mexico
Thailand